
Advances in video compression: a glimpse of the 

long-awaited disruption 

CITE THIS ARTICLE 

Thomas Guionnet 

Marwa Tarchouli 

Sébastien Pelurson 

Mickael Raulet 

Guionnet, Thomas; Tarchouli, Marwa; Pelurson,Sébastien; Raulet, Mickael ; 2022. Advances in video compression: a glimpse of the long-awaited 
disruption. SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING. ISSN Print: 2446-9246 ISSN Online: 2446-9432. doi: 10.18580/setijbe.2022.3. 
Web Link: http://dx.doi.org/10.18580/setijbe.2022.3 

cQ G) �COPYRIGHT This work is made available under the (reative Commons - 4.0 lnternational License. Reproduction in whole or in part 
i�:::&1-m,1111!!!!!!!!!-is permitted provided the source is acknowledged. 

33



Advances in video compression: a glimpse of 

the long-awaited disruption 

Thomas Guionnet, Marwa Tarchouli, Sébastien Pelurson and Mickael Raulet 

Ateme, {t.guionnet, m.tarchouli, s.pelurson, m.raulet}@ateme.com 

Abstract- The consumption of video content on the internet 

is increasing at a constant pace, along with an increase of video 
quality. As an answer to the ever-growing demand for high 

quality video, compression technology improves steadily. About 

every decade, a new major video compression standard is issued, 

providing a decrease of bitrate by a factor two. Interestingly, the 

technology does not change radically between codecs 

generations. Instead, the sarne block-based hybrid video coding 

scheme principies and ideas are re-used and pushed further. Ali 

along the video compression history, there were several attempts 

to depart from this model, but none achieved to be competitive. 

Following the latest codec generation, VVC, the research 
community has started focusing on deep learning-based 

strategies. Could it be the new contender to the classical hybrid 

approach? This paper analyzes the benefits and limitations of 

deep learning-based video compression methods, and 

investigates practical aspects such as rate control, delay, 
memory consumption and power consumption. Overlapping 

patch-based end-to-end video compression strategy is proposed 
to overcome memory consumption limitations. 

Index Terms-Video Compression, Video codec, MPEG-2, 

H.264, AVC, HEVC, VVC, artificial intelligence, machine

learning, deep learning, end-to-end video encoding.

1. INTRODUCTION 

T
HE consumption of video content on the internet is 

increasing at a constant pace, along with an increase of 

video quality. Cisco [1] estimates that by 2023, two-thirds of 

the installed flat-panel TV sets will be UHD, up from 33 

percent in 2018. The bitrate for 4K video is more than double 

the HD video bitrate, and about nine times more than SD 

bitrate. As an answer to the ever-growing demand for high 

quality video, compression technology improves steadily. 

Video compression is a highly competitive and successful 

field of research and industrial applications. Billions of 

people are impacted, from TV viewers and streaming addicts 

to professionals, from gamers to families. Video compression 

is used for contribution, broadcasting, streaming, cinema, 

gaming, video-surveillance, social networks, 

videoconferencing, military, you name it. 

The video compression field stems from the early 80's. 

Since then, it has grown continuous improvements, and 

strong attention from the business side - the video encoder 

market size is planned to exceed USD 2.2 Billion by 2025 [2]. 

About every decade, a new major video compression standard 

allows halving the required bitrate to achieve a given quality. 

The latest milestone is the Versatile Video Coding (VVC) 

standard, issued in 2020. From generation to generation, until 

VVC, coding efficiency has been improved by relying on the 

sarne principle, that is, the block-based hybrid video coding 

scheme [4]. For more than 30 years, the video compression 

field has known no revolution or disruption. Instead, the sarne 

principles and ideas have been re-used and pushed further. At 

each generation, existing tools are enhanced, new local 

coding tools are added, but the overall structure remains the 

sarne. ln other words, each generation is a complexified 

version of the previous one. The algorithmic complexity 

increase is directly reflected by the implementation 

complexity. For instance, the VVC verification software 

model (VTM) is about 10 times slower than its predecessor, 

the High Efficiency Video Coding (HEVC) verification 

model (HM). Many attempts have been made to depart from 

the block-based hybrid scheme, none of them have been 

successful so far. 

As of today, the tremendous progression of video 

compression technology is not compensating for the increase 

in the demand for always more and higher quality video 

services. Therefore, the research effort is still ongoing, 

seeking improvements over VVC, as it was over each 

previous codec generation. Indeed, The Joint Video Expert 

Team (NET), a working group managed by both ISO/IEC 

MPEG and ITU-T VCEG intemational standardization 

bodies, responsible for the development and support ofVVC, 

is currently conducting explorations beyond VVC. There is a 

new situation arising though: this exploration is following 

two distinct tracks. One is "classical", consisting in adding or 

enhancing coding tools to VVC, while the other is dedicated 

to the exploration of the usage of machine leaming (ML ). The 

field of ML, and more particularly deep learning (DL), has 

made dramatic advances during the last decade, especially in 

the computer vision domain. There are several ways of 

applying ML to video compression. One can consider 

creating elementary coding tools, replacing, or 

complementing the existing tools in the hybrid block-based 

scheme. At the other extremity of the spectrum, one can 

completely replace the hybrid block-based scheme by a deep 

leaming model. The latter solution is highly disruptive with 

respect to the current video compression history. Hence the 

question: to what extent is ML becoming essential to video 

compression? 

The goal of this paper is to analyze the benefits and 

limitations of deep leaming-based video compression 

methods, and to investigate practical aspects such as rate 

control, delay, memory consumption and power 
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consumption. ln a first part, the evolution of vídeo 

compression is recounted, with a few words on previous 

attempts to depart from the hybrid block-based modeL ln a 

second part, the deep-leaming strategies are described, with a 

focus on tool-based, end-to-end, and super-resolution-based 

strategies. ln a third part, the practical limitations for 

industrial applications are analyzed, Finally, a technology is 

proposed, namely overlapping patch-based end-to-end vídeo 

compression, to overcome memory consumption limitations, 

Experimental results are provided and discussed, 

li. A SHORT HISTORY OF VIDEO COMPRESSION 

A. CODECs and applications

The idea oftemporal prediction for vídeo compression can

be tracked back to 1929, with a patent advocating the coding 

of successive image differences [3], but the modem history 

of vídeo compression really starts in the 80's. Two 

organizations are essentially responsible for vídeo 

coder/decoder (codec) standardization [5][6]: the 

Intemational Telecommunications Union 

Telecommunication Standardization Sector (ITU-T) Vídeo 

Coding Expert Group (VCEG), a United Nations 

Organization (formerly CCITT) [7], and the Intemational 

Organization for Standardization and Intemational 

Electrotechnical Commission (ISO/lEC) Moving Picture 

Expert Group (MPEG). ISO is an independent, non­

govemmental intemational organization with a membership 

of 167 national standards bodies [8]. Aside from 

standardization, many proprietary or independent codecs 

exists. Nonetheless, the most successful and well-known line 

of codecs stems from standardization and constitutes the 

focus of this paper. 

The first standardized vídeo codec, ITU-T H.120 [63], has 

been issued in 1984, then updated in 1988, It already includes 

a form of intra prediction (Digital Pulse Coded Modulation, 

DPCM), scalar quantization, entropy coding in the form of 

variable length coding (VLC) and motion compensation. 

ITU-T H.261 [64] was first issued in 1988. It is dedicated 

to vídeo telephony and introduces the most important block­

based motion compensation and Discrete Cosine Transform 

(DCT). It is the first practically successful vídeo codec. It was 

later replaced by the dramatically improved ITU-T H.263 

[65] in 1995.

Meanwhile ISO/lEC developed MPEG-1 [66], issued in

1993. It was designed to compress VHS-quality raw video, 

thus enabling first digital TV applications (vídeos CD, Cable, 

satellite). One may note that the best-known part ofMPEG-1 

is the MP3 audio format it introduced. MPEG-1 has been 

followed by the non-obviously numbered MPEG-4 part 2 

[67], in 1998, also called MPEG-4 visual because of its 

object-oriented approach. 

Interestingly, in the 90's, two lines of standards were 

coexisting. The ITU-T H.26X line was designed for vídeo 

telephony, while the ISO/IEC MPEG was meant for digital 

TV broadcasting, However, both were sharing many 

technological aspects. There is even a certain degree of 

compatibility between MPEG-4 visual and H.263. Quite 

logically, ISO/IEC MPEG and ITU-T VCEG have been 

joining their effort in the development and publication of 

common vídeo compression standard, thus starting a 

particularly successful line ofvideo codecs. 

MPEG-2/H.262 [68] has been a tremendous success in the 

90's, and the enabler ofwidespread digital TV. MPEG-2 has 

been present on cable TV, satellite TV, DVD, and is still 

running nowadays. ln the early 2000's, AVC/H,264 [69] has 

been a key component of the HD TV development, on 

traditional networks as well as on internet and mobile 

networks, AVC/H.264 is also used in HD Blu-Ray discs, Ten 

years later, in the 2010's, HEVC (H.265) [70] has been the 

enabler of 4k/UHD, HDR and WCG. Finally, VVC (H.266) 

[71] has been issued in 2020. Although it is a young codec,

not yet widely deployed, it is perceived as an enabler for 8k

[9] and as a strong support for the ever-growing demand for

high quality vídeo over the internet.
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Fig. 1. Toe block-based hybrid video coding scheme. 

B, The block-based hybrid video coding scheme 

The block-based hybrid vídeo coding model is depicted on 

Fig. 1. It constitutes the basis of all current vídeo 

compression standards. The main elements are 
• Intra prediction, for coding intra frames, i.e.,

frames without temporal dependency, or intra

blocks inside inter frames, for managing local

areas that cannot be temporally predicted, such as

uncovering areas.
• Inter prediction combines the capabilities of

keeping a buffer of previously encoded frames

and addressing these previous frames with

motion compensation for efficient prediction.
• Transform and quantization are applied on

residual blocks of pixels output by the prediction

step. The transform tends to compact the

information on a few coefficients, while the

quantization adjusts the trade-off between

quality and bitrate. Quantization is a lossy

process.
• Entropy coding is a fundamental information

theory concept. Its goal is to determine the

statistically shortest representation of the data. It

is a lossless process.
• In-loop filtering is applied on the frames which

are stored for future temporal prediction, to

improve their quality, hence the quality of the

upcoming predictions. The most advanced

codec, VVC, implements four successive loop

filters (LF), luma mapping with chroma scaling
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and it is yes. Indeed, the JVET standardization group is 

currently conducting explorations. The Ad-Hoc Group 12 

(AHG 12) is dedicated to the enhancement of VVC. Around 

15% coding efficiency gains are already achieved, only two 

years after VVC finalization [18]. So, we may continue the 

process for at least another decade. 

However, there is a new contender arising: artificial 

intelligence; or more precisely, machine leaming, or deep 

leaming. ln another Ad-Hoc Group, AHGll, JVET is 

exploring how machine leaming can be the basis of new 

coding tools. This also brings coding efficiency gains of 

about 12% [19]. Hence the question: will the future ofvideo 

compression include machine leaming? At this stage, we 

would like to point-out two new facts. 

MPEG-2 AVC HEVC vvc 

Fig. 4. Evolution offrame partitioning in video codecs from MPEG-2 to 
vvc. 

First, considering the "traditional" methods explored by 

AHG 12, there is a coding tool which seems to stop bringing 

gains: frame partitioning. The partitioning is a fundamental 

tool for vídeo compression. It defines how precise can be the 

adaptation of the encoder to local content characteristics. Toe 

more flexible it is, the better the coding efficiency, All the 

subsequent coding tools depend on the ability to partition the 

frame efficiently. As illustrated on Fig. 4, A VC/H.264 has 

16x16 pixels blocks, with some limited sub-partitioning. 

HEVC implements a much more flexible quadtree based 

partitioning from 64x64 pixels blocks. VVC combines 

quadtree partitioning with binary and temary tree 

partitioning, from 128x128 pixels blocks for even more 

flexibility. During the exploration following HEVC 

standardization, the single fact of enhancing the partitioning 

brought up to 15% coding efficiency gains. Similarly, in the 

AHG 12 context, people carne with new extended partitioning 

strategies. However, only marginal gains were reported [20]. 

Does that mean we are finally approaching a limit? 

The second fact is the development of end-to-end deep 

leaming vídeo compression. This strategy is highly 

disruptive. ln short, the whole block-based hybrid coding 

scheme is replaced by a set of deep leaming networks, such 

as auto-encoders. These types of schemes are competing with 

state-of-the-art fixed image coders [21]. For vídeo 

applications, they are matching HEVC performance [22][23]. 

This level of performance has been reached in only five years. 

That's an unprecedently fast progression. One may easily 

extrapolate, even if the progression slows down, that the 

state-of-the-art vídeo compression performance will soon be 

the end-to-end strategy prerogative. Therefore, we may very 

well be at a turning point ofthe vídeo codecs history. 

Ili. THE ADVENT OF ARTIFICIAL INTELLIGENCE 

Artificial intelligence (AI) refers to technologies that allow 

computers to perform tasks that have so far required human 

intelligence. The AI term is bom in the 1950s with among 

others the work of Alan Turing and its famous Turing test 

[34]. Already at this time, researchers tried to create artificial 

neurons to mimic the human brain. The first neural machine, 

the Stochastic Neural Analog Reinforcement Calculator 

(SNARC) has been built in 1951 by Marvin Minsky and has 

been the beginning of larger research in this field. This leads 

to the creation ofthe well-known Perceptron in 1957 which 

is the basis of modem deep learning. But researchers were too 

optimistic creating an intelligent machine. After several 

failures, funding and interest in the field dropped off, leading 

to the first AI winter. Researchers were mainly constrained 

by the limited computing power. Some of them persisted in 

the idea of creating a machine capable of carrying out 

complex human tasks, and in 1997, IBM' s Deep Blue became 

the first computer to beat a chess champion. A lot of modem 

deep leaming architectures such as Convolutional Neural 

Networks (CNN) or Recurrent Neural N etworks (RNN) were 

designed during the 1980s et 1990s, but they required too 

many data and power to train, and they were forgot during 

several years. Researchers then focused on more practical and 

more humble problems. This was the emergence of machine 

leaming (ML). 

ML is a technology that allows algorithms to realize tasks 

without having been explicitly programmed to do them. It is 

a subfield of artificial intelligence that let the algorithms 

discover pattems in data to improve their performances on a 

specific task. A dataset needs to be prepared in order to train 

the model for a given task. This is the training step. After 

several iterations, the algorithm, or model, leams to extract 

more useful features from the dataset which makes him do 

better predictions. The model is then evaluated on a 

validation set to check that it generalizes well, i.e., that it 

performs as well on data that it has never seen before. ML 

have been used in different fields such as speech or character 

recognition for example, and many of the ML algorithms 

widely used today were invented before the 2000s (nearest 

neighbor, boosting, multilayer perceptron, . . .  ) 

ln the 2000s, computing power had improved, and the era 

of big data started to make a lot of, well, data available. AI 

started to succeed in many industrial use cases such as 

robotic. ln the 201 Os, computing power had improved further, 

specifically with the progress of Graphical Processing Units 

(GPUs). Moreover, public datasets were built with annotated 

samples, such as ImageNet [35], created for image 

classification task. Few years after the dataset creation, 

ImageNet launched the ImageNet Large Scale Visual 

Recognition Challenge (ILSRVC), an annual AI object 

recognition challenge. This led to the first deep learning­

based solution in 2012 [36], outperforming all other solutions 

based on traditional machine leaming. 

This work triggered an explosion of applications using 

deep leaming technologies, allowing to achieved 

performances never reached before on various tasks related 

to natural language processing and computer vision. Deep 

learning allows to automatically create a hierarchical 

representation of data, highlighting features and their 

relations that are hard, if possible, to describe manually. 

Today, DL allows cars to drive themselves, robots to 
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significant progress in coding performance, The state-of-the­

art of such methods are currently competitive with the latest 

traditional coding system VVC in intra mode. lnspired by this 

success, deep learning methods were extended to learned 

vídeo coding, 

Leamed video compression approaches can be divided into 

two main categories. The first one keeps the traditional 

coding pipeline, that deals with the inter frame redundancies, 

unchanged (motion estimation, motion compensation, 

residual coding). Then, for each step, deep leaming 

architectures such as auto-encoders and optical flow 

architectures are used. For instance, [51] introduce the first 

low latency compression framework called DVC using auto­

encoders to code motion vectors and residuals, a pretrained 

optical flow model for motion estimation and a bilinear 

warping for motion compensation. [53] improves the DVC 

performance by using multiples frames as references. This 

new coding system is called ML VC, it added four neural 

modules to the DVC framework. The first explored a buffer 

of multiple previous motion vectors to achieve motion 

estimation ofthe current frame. The second does the sarne for 

motion compensation. The two remaining modules aim to 

refine the motion vectors and the residuals, respectively. ln 

the sarne context of low latency coding, [55] introduces a 

recurrent learned video codec (RL VC) using a recurrent 

autoencoder and a recurrent probability model to compress 

the motion and the residual features. The goal is to thoroughly 

explore the temporal correlation between frames and latent 

representations. ln fact, this work enables using all the 

previous decoded frames as reference for compressing the 

current frame. ln addition, the recurrent probability model 

tends to achieve lower bitrate since the latent representation 

of the current frame is conditioned with the previous ones. 

While DVC manages to outperform the low-delay P frames 

(LDP) configuration of x264 and compete with the sarne 

configuration of x265, ML VC and RL VC outperform DVC 

and x265 in terms of coding efficiency. 

[52] presents a framework to code a GOP structure, which

includes P and B frames, with different level of quality

(HL VC). P and B frames are coded using two architectures of

networks which achieve motion estimation, motion

compensation and residual coding with hierarchical quality

levels. Then, a Recurrent Neural Network (RNN) module is

used to enhance quality of the decoded frames. This work's

proposed framework depends on GOP structure, which is set

manually before proceeding to the training stage. Although

this method codes a GOP structure with B and P frames, it

was evaluated against the LDP mode of x265 and the low

latency model DVC. Compared with x265, it manages to

obtain gains in BDBR: -6% for PSNR models and -35.94%

for MS-SSIM models. [54] presents a method to achieve

perceptual leamed video compression (PL VC) using a

recurrent conditional GAN. This framework consists of a

compression network based on RLVC [55], that serves as

generator, in addition to a recurrent discriminator that take as

input spatial and temporal conditions as well as the current

and previous reconstructed frames, The training process

minimize a combination of an adversarial loss function with

the rate distortion one, This work manages to get the best

results in terms perceptual metrics such as LPIPS [60] and

FID [61] compared to the leaned codecs: RLVC, HLVC, 

MLVC and the traditional codec HEVC (HM16,20). 

However, in terms of objective metrics like PSNR and MS­

SSIM, it is on-par with DVC, and it performs worse than the 

previously mentioned leamed vídeo codecs as well as HEVC 

(HM 16.20). 

While in the previous works, 1 frames are compressed using 

either the BPG codec for [51][53][55][52] or a leamed image 

codec for[54], [56] proposes a neural coding framework for 1 

and P frames, and [22] introduced a neural architecture, 

consistent with all type of frame 1, P and B frames. The 

system contains two networks: MOFNET deals whith motion 

estimation and compensation and CodecNet achieves 

conditional coding which replace residual coding. This 

approach achieves performance competitive with the state-of­

the-art vídeo codec HEVC (HM 16.20). 

The second category of end-to-end leamed video 

compression focuses on reducing temporal redundancy using 

algorithms that are different from the traditional pipeline. For 

example, [57] proposes a vídeo compression framework 

based on an 3D auto-encoder combined with temporally 

conditioned entropy model. Toe performance of this method 

is competitive with x265 in terms ofMS-SSIM, Other works 

used frame interpolation for video coding. [58] explores 

Generative Adversaria! Networks (GAN) as a decoder to 

reconstruct separate frames, then used linear interpolation to 

reconstruct the missing frames. This work is evaluated on low 

resolution gray sequences in low bitrate. Unfortunately, the 

results of this approach are only comparable with MPEG4. 

[59] uses a learned image codec to compress key frames and

then uses an interpolation model to predict the missing

frames. This approach is compared with handcrafted codecs

such as HEVC, AVC and MPEG on the VTL dataset [62]. lt

outperforms MPEG4 and is matching H264.

All in all, although leamed video coding in intra mode 

(learned image coding) performance is on-par with the latest 

handcrafted codec VVC, extracting spatiotemporal features is 

more challenging which makes leamed inter coding more 

difficult. Therefore, the state-of-the-art of learned video 

compression currently matches the coding efficiency of 

HEVC. However, one can predict that the progress in this 

field will be significant in a short period of time, 

V. PRACTICAL APPLICATION OF MACHINE LEARNING BASED

VIDEO COMPRESSION 

A. Delay, rate-contrai and content adaptation

There is a huge difference between a codec, as defined by

standards, and a ready to production live vídeo encoder. Toe 

codec is only a part of a video encoder. A video encoder must 

manage various inputs or capture, decoding, encoding, 

muxing and output, all along with system functions and user 

interface. Even when focusing on the encoding part, there is 

more than the codec. Live encoding requires optimization of 

the complexity/quality trade-off, which generally translates 

into added delay. This delay must of course stay under 

control. Delay is caused among other things by Pre­

processing and analysis in a look-ahead buffer, frame 

reordering for efficient group of pictures (GOP) structure 

coding, pipelining, and rate-control. 
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Content adaptation is desirable for optimal quality, GOP 

structure is generally adapted to the nature of the content 

Scene-cuts are detected, and temporal prediction is avoided 

across them, Considering end-to-end video coding, the sarne 

ideas may apply, However, depending on the end-to-end 

implementation, it may be simpler. The idea ofGOP structure 

may be managed in a transparent manner by the ML model. 

The notion of successive GOP may be easily conserved, 

allowing easy chunking for OTT and short zapping time. 

ln short, content adaptation does not seem to be an obstacle 

to the end-to-end video encoders development. Rate-control, 

on the other hand, may be more difficult. Indeed, in 

traditional video coding, there is an understandable, though 

non-trivial, relationship between the QP and the bitrate. ln an 

end-to-end video encoder, there exist a parameter tuning the 

bitrate, However, the effect of this parameter is generally not 

easy to model. Some encoders are actually trained for a single 

value of this parameter. lt implies that if one needs 64 rate 

levels, like the 64 QP values of VVC, 64 models must be 

trained and stored. ln an attempt to answer to this issue, [50] 

proposes a new loss function, where the À parameter, 

responsible for rate tuning, is non constant. lt allows to design 

a training procedure where several values of À are fed 

randomly to the system, thus making a model that can react 

appropriately to any value of À at inference time. Literature 

on this topic is limited as oftoday, and there is no doubt that 

further research is needed, but this example is encouraging. 

Finally, the main difficulty to handle may very much be the 

huge operational complexity ofNN. 

B. Computing resources

During several years after the deep leaming emergence,

researchers did not really care about models' complexity. The 

solutions proposed for various public challenges were more 

complex every year, while their performances continued to 

grow exponentially. ln their analysis, [24] have shown that 

the largest model training runs have doubled the 

computational power used every 3.4 months since 2012. As 

an example, Danish researchers used the "Carbontracker" 

tool [25] to show that the energy required to train a GPT-3 

model (one of state-of-the-art model for natural language 

tasks) could have the carbon footprint of driving 700,000km. 

The training step of machine leaming models is highly 

resource-intensive, but the inference one consumes far more 

power. Indeed, while the model is trained once, it can be used 

for billions of inferences. lt is estimated that inference 

accounts for up to 90% of the computing cost [26]. 

The increase in the model's complexity has been made 

possible thank to the hardware evolution, For deep leaming 

technologies, Graphical Processing Units (GPUs) are often 

the default choice, because of their ability to perform a lot of 

low-level mathematical operations in parallel. Initially 

designed for games and graphically intensive applications, 

researchers thought their capabilities were suited to run deep 

leaming models. This market is dominated by Nvidia, and 

since the deep leaming development, they have built new 

GPU architectures that make their hardware more effective 

for models training and inference. But this kind of hardware 

still is a general-purpose solution. Some manufacturers 

decided to build specific chips designed to run deep leaming 

models even more effectively. One can think about Google 

Tensor Processing Units (TPUs), or Microsoft Catapult 

project. They are based respectively on Application-Specific 

Integrated Circuits (ASIC) and Field Programmable Gate 

Array (FPGA) and allow power consumption reduction 

related to GPUs. These solutions are available in cloud 

infrastructures, so they can be used for models training and 

online inference. These use cases are rarely constrained by 

consumption resources. If more power is needed to speed up 

training or inference, it is simple to scale by adding GPUs for 

example, But what about edge <levices? 

Edge <levices are appliances on which data collection takes 

place, lt can be desktop computers, smartphones, or 

connected <levices. While GPUs or TPUs are still the default 

solutions for training models, a lot of works has been done 

for performing inference on edge <levices. ln contrary to 

cloud platforms, scaling is very hard due to limits in space, 

power, and connectivity. But this is a very important use case 

as it allows processing data locally, mitigating networks 

limitations, increasing security, and improving data privacy. 

Researchers and manufacturers have then put a lot of effort 

improving edge computing hardware for processing deep 

leaming models. Hence new types of AI-optimized 

accelerators have been designed during the past few years, 

that can be regrouped under the name Neural Processing 

Units (NPUs). Main mobile manufacturers have designed 

their own solution. This includes chips such as the Apple 

Neural Engine, the Kirin 980 from Huawei, or the Exynos 

9820 from Samsung. There also exists development boards 

such as the Nvidia Jetson Nano or the Google Coral Edge 

TPU. NPUs are based on specific architectures that make 

deep leaming model execution faster while having limited 

consumption. A lot of accelerators exist today [27], and this 

is a very active research field. Few years ago, MLPerf 

benchmarks [28] have been released in order to make AI 

platforms performances comparison simpler. lt allows to get 

training time, inference time, and more recently power 

consumption of a specific hardware configuration for 

different AI models. Despite these initiatives, AI accelerators 

comparison remains very hard as performances are related to 

too many factors, not only the accelerator itself. 

Performances are also impacted by the CPU, and the software 

library used to deploy the model. 

ln addition to work on specialized hardware, a lot of work 

has been done on the software part. Some of them are 

designed for CPUs (OpenBLAS, Intel MKL, ... ), and others 

for GPUs (cuBLAS, cuDNN, ... ). All of them optimize 

matrix operations in order to make AI model execution faster 

using only algorithmic optimizations. These are libraries 

allowing low-level mathematic operations, but they are 

mainly used through higher-level frameworks and tools. For 

example, Openvino [29] and TensorRT [30], respectively 

developed by Intel and Nvidia, are platforms offering 

runtimes with optimized operations implementation, but also 

some model optimization strategies. This includes weights 

quantification, network pruning, or operations fusion. 

The combination of hardware and software evolution 

allows the execution of powerful AI models on edge <levices 

in real time. But the AI field is evolving really fast. Even with 

this progress, models' complexity keeps growing every year, 
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and hardware and software providers must continue to 
improve their solutions to make model execution faster or less 
energy consuming. Recent trends such as neuromorphic 
computing [31] show there is room for improvement with 
completely different designs. Also, new hardware is 
challenging dominant existing solutions. For example, the 
Hailo 8 chip [33] presents performances up to 13x those of 
Google TPUs. All of this shows that the Moore's law 
continues and makes possible further improvements in AI. 

VI. A CASE-STUDY: END-TO-END MEMORY CONSUMPTION

A. Problem statement

As models' sizes are growing continuously, memory
consumption is also becoming an issue, along with computing 
power. Toe case of end-to-end leamed encoding is considered 
here. Toe auto-encoder architecture, built with convolutional 
layers, enables processing different video resolutions, no 
matter the resolution used during the training step. However, 
with growing models' sizes and video resolutions (4K, 8K), 
these solutions are facing hardware memory saturation. One 
way to solve this issue is to use a patch-based coding 
approach. Toe video frames are divided into patches smaller 
than the frame size, that can be encoded independently. Then, 
the decoded patches are gathered to reconstruct the decoded 
frames. 

This solution addresses the hardware limitation issues, but 
the reconstructed frames can have block artifacts at the patch 
boundaries, widely deteriorating the video quality. 

B. Patch-based end-to-end vídeo encoding

A solution to the memory saturation is proposed to perform
patch encoding while removing block artifacts. The idea is to 
encode overlapping patches and then use a linear function to 
combine the reconstructed overlapped pixels. If bm and bm+1 

are two consecutive reconstructed patches overlapping 
horizontally on N pixels, the value ofthe ith overlapped pixel 
Prec ( i) for a given line in the reconstructed frame is
determined by the following equation: 

Prec (i) =

(1 - N�JPbm (P + i) + (
N�JPbm+1 (i), (1) 

where i E {O, ... , N - l} is the index ofthe overlapped 
pixels, P is the size of the patch without overlapping, Pbm 

and Pbm+1 are pixels values, for a specific line, of two 
consecutive decoded patches bm and bm+l respectively. The 
sarne equation applies for vertically overlapping patches. 

The proposed approach has been applied to encode I 
frames, using an end-to-end leamed image codec which is an 
implementation ofthe model architecture introduced in [21], 
This model was trained on CLIC 2020 dataset [37]. For 
training, 256x256 sized patches were randomly cropped from 
each image of the training set. The loss function to be 
minimized is: 

]=D+ÀR (2) 

where D refers to the distortion measured by the Mean 
Square Error (MSE) or the Multi-Scale Structural Similarity 
Index (MS-SSIM) metrics, and R refers to the rate used to 

transmit the bitstream, estimated using the Shannon entropy. 
À is the Lagrangian multiplier, allowing to adapt the bit rate 
targeted by the leamed image coding model. 

The method is then evaluated on Class B, C, D, E and F of 
the NET Common Test Conditions (CTC) sequences (8-bit 
sequences) [72]. For each sequence, one frame is extracted 
and compressed both entirely (referred to as the full image 
approach) and by the proposed patch-based approach, with 
and without overlapping, where N E {O, 2, 4, 8, 16, 32} 
overlapped pixels and P = 256, as the training resolution. 

BD-rate gains of the patch-based leamed image coding 
with and without overlapping were computed comparing to 
full image leamed image coding, using an end-to-end model 
trained to minimize MSE as distortion metric. 

For MSE models, patch-based image coding without 
overlapping presents a slight loss in BD-rate (Average BD­
rate +0.013), comparing to full image coding, which mostly 
corresponds to the block artifacts issue caused by patch-based 
approaches. 

(a) original (b) full lmage (e) w/o overlap 

(d) N = 2 (e) N = 4 (f) N = 8

Fig. 5. Visual results of comparison for FourPeople. The model used 
optimizes the MSE metric with À= 4096. 

On the other hand, the proposed method achieves a gain in 
BD-rate, which increases as the number of overlapped pixels 
is increased. For N = 2, the average BD-rate gain among CTC 
sequences is: -0.025, which shows that two overlapped pixels 
seems to be sufficient to eliminate the borders artifacts. With 
N = 8 and N = 16, small gains are observed comparing to full 
image coding: -0.034 and -0.041 respectively. For N > 16, 
BD-rate gains saturation is observed, An example of decoded 
images is presented in Fig. 5. Overlapping with N = 2 and N 
= 4 reduce the block artifacts while overlapping with 8 pixels 
eliminates them entirely. 

The experimental complexity and memory consumption 
are reported in Table I. Frames of different resolutions were 
extracted from the NET CTC and were coded using two 
machines with powerful GPUs: GeForce RTX 2080ti and 
GeForce RTX 3090 with memory capacity of 1 lGo and 24Go 
respectively. Full resolution coding of an HD image is not 
possible on both GPUs due to "Out Of Memory" (OOM) 
error, while full coding an 1280x720 image, can only be run 
on the machine with the GPU RTX 3090. It is important to 
note that these resolutions are standard resolutions in 
practical applications of image compression. 4k is not even 
considered. Therefore, the fact that they cannot be run on one 
ofthe latest GPUs is inconvenient. ln this case, the proposed 
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method provides a solution that enables coding high 

resolution images without deteriorating quality, While the 

method is necessary for resolution 720p and above, it is 

adding some complexity to the system for smaller resolutions, 

For instance, when running the resolution 832x480 on 2080ti 

GPU, patch-based coding increases the coding time by 3,63% 

compared with full resolution coding, This is expected since 

our method requires coding more pixels to overlap patches, 

To conclude this section, the proposed approach addresses 

the hardware memory limitation problem since it allows 

coding resolutions such as HD and 720p, while maintaining 

sarne or better quality as the full resolution leamed coding, 

TABLE I· PERFORMANCE OF PATCH BASED END-TO-END ENCODING 

Coding Time Coding Time 
Resolution Method GPU 2080 GPU 3090 

llGo 24Go 

Full Resolution Coding OOM OOM 
1920x1080 

Patch coding in parallel 
with overlapping 

3.82s 2.05s 

Full Resolution Coding OOM 0.93s 
1280x720 Patch coding in parallel

with overlapping 
1.91s 1.012s 

Full Resolution Coding 1.06s 0.52s 
832x480 Patch coding in parallel 

l.l0s 0.55s 
with overlaooing 

VIL WRAP-UP 

From MPEG-2 in the 90's to VVC nowadays, four 

successive major generations of codecs have made video 

ubiquitous, from TV screen to smartphones, from over-the­

air to internet. All these codecs are based on the sarne general 

structure, the hybrid block-based modeL Previous attempts to 

overcome this model have all failed, despite of their 

numerous technical qualities and features. But how long will 

this model continue to dominate? 

Today, one observes a small hint ofa decline ofthe hybrid 

block-based model, along with the rise ofmachine leaming. 

Machine leaming is the state-of-the-art technology in many 

image and video processing fields, but still not in video 

compression. ML may not be ready yet for video 

compression, but it is progressing fast. W e argue in this paper 

that current limitations can be addressed, either through plain 

technological progress, or through dedicated algorithmic 

progress. 

As an example, a new method of memory management for 

machine leaming based end-to-end image and video 

compression is described in this paper, namely patch 

encoding with overlapping, 

All in all, for the upcoming video codec generation, two 

approaches are competing. Time will tel1, but our guess is that 

there will be another generation ofhybrid block-based model 

before the advent of machine leaming based video 

compression. Researchers are just needing a few years to 

refine and make the technology practicaL Model sizes and 

hardware capabilities will eventually converge. 
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