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Implementation of convolutional NEURAL 

network in FPGA for image recognition 

Abstract-Neural Networks (NN) are being researched and 
improved to a degree that machines can closely resemble the 
capacity to execute complex tasks that only an intelligent animal 
is capable of. Vision used in the interpretation and recognition 
of the environment is one of such tasks that is being researched 
so future technologies can simulate vision in autonomous vehi­
cles to further improve self-driving capabilities, increase driver 
convenience, help avoid accidents, and even autonomous delivery. 
Convolutional neural networks, inspired by the mechanics of ani­
mal vision, are utilized for the complex task of image recognition. 
Field Programmable Gate-Arrays (FPGA) recent developments 
have given it more parallel processing and processing speed 
making it a prime candidate for the implementation of NNs 
efficiently, with more processing capabilities and low response 
times compared with the alternatives. The objective of this work 
is to evaluate the performance viability of FPGA implementation 
of an image classification NN with acceptable accuracy and low 
response time. 

Index Terms-FPGA; CNN; autonomous vehicles; MNIST. 

1. INTRODUCTION 

Artificial intelligence has attracted attention from the most 
varied types of industries, with several studies being carried 
out on the subject and with recent advances in hardware, 
increasingly complex algorithms are being developed with 
adequate processing time, making it possible to derive useful 
and fast information from large amounts of information, but 
the question of efficient hardware implementation remains to 
execute these algorithms quickly and efficiently. 

Along with the development of techniques and studies, 
the applications of convolutional neural networks (CNNs) 
have grown considerably, mainly in activities that require 
understanding at a level comparable to that of a human being, 
such as natural language processing and computer vision and it 
is possible to incorporate CNNs to assist in processing audio, 
image classification, scenario labeling, and facial recognition 
[1], [2]. Some networks achieve better results than human 
performance as evidenced in the work of [3]. The impressive 
performance of these networks comes at the cost of large 
memory bandwidth and intensive use of computational logical 
resources [ 4]. 

CNNs have excellent performance when it comes to image 
classification, but such networks require millions or even 
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billions of operations per second to classify an image, which 
makes network implementation a challenge in terms of com­
putational power and memory storage capacity. For example, 
in 2012 Alexnet [5], with a network architecture that required 
the storage of 60 million parameters to process an image, won 
the Imagenet contest [6]. ln 2014 the VGGNET network [7] 
wins the sarne contest, but its design required loading about 
seven times more parameters, because of this, the network 
required dedicated hardware to run. 

CNNs have enabled the increasing automation of tasks 
and machines such as autonomous cars, the idea of product 
delivery via drone is already being discussed [8], but in the 
sarne way, as autonomous cars require a large amount of 
information and an equally large processing power together 
with a robust algorithm to detect and recognize obstacles 
[9], drones or autonomous aircraft require an even faster 
processing and image recognition capacity. To be able to 
follow the movements and maneuvers performed by these 
vehicles. The choice of hardware for implementing CNNs 
is important because it will influence the needs and results 
of the network, for training the choice mostly adopted is 
a graphics processing unit (GPU), due to its great capacity 
for parallelism of calculations, reaching 11 trillion floating 
point operations per second (TFLOP/s) and due to the need 
to train the neural network only once, the GPU's energy 
consumption does not significantly impact the process, as for 
the implementation of the network in themselves, they can 
be implemented either on GPU, Field Programmable Gate­
Arrays (FPGA) or Central Processing Unit (CPU), being more 
flexible FPGAs when compared to ASICs, counting on easy 
and fast implementation in the market and upgradeability even 
after implementation compared to CPU and it is also worth 
mentioning its potential for improving the architecture, energy 
savings compared to GPU and the possibility ofusing different 
formats and numerical representations. Microsoft has recently 
explored the possibility of CNNs on FPGAs as cost-effective 
network accelerators in a data center [10], [11]. Many studies 
are being carried out on accelerators for CNNs implemented in 
FPGAs [12], [13], as well as tools to generate such accelerators 
automatically [14], [15]. Studies have also been carried out on 
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CNNs networks with low accuracy, networks using weights 
and activation function with numbers in binary format [6], [16] 
and in some cases, the network has an accuracy comparable 
to networks using 32-bit floating point, these types of imple­
mentation are attractive in FPGAs because they take advantage 
of the efficiency of operations performed on Look Up Tables 
(LUTs), The implementation in FPGAs has seen more and 
more attention due to the constant development of tools that 
help and automate the development of implementations on 
the board, the Xilinx Vivado tool for high-level synthesis 
(HLS) allows the user to write code with a reasonable level 
of abstraction and the tool's algorithm compiles the code for 
register transfer level (RTL) between registers [17], 

For complex tasks that require a large number of cal­
culations, but which, at the sarne time, demand efficiency 
and low response time, CNN in FPGA focused on image 
recognition would be a tool that would drive the development 
and implementation of such technologies to advance sectors 
that would benefit from autonomous aerial vehicles and make 
the autonomous car industry even more robust. 

II. NEURAL NETWORKS

A fundamental component of neural networks, in general, 
are artificial neurons, inspired by biological neurons, which are 
responsible for most of the processing that occurs in artificial 
neural networks (ANN s) and can be arranged within a network 
in various ways, 
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Fig. 1: Perceptron. 

It's possible to observe the general structure of a neuron 
or perceptron in Fig. 1 where from Xó to Xn representing 
input data or signals from neurons from another layer, the 
synaptic weights Wo to Wn that determine how excitatory 
or inhibitory the signal is for the neuron. The adder block 
is responsible for summing the modified input signals with a 
predetermined value 0 called bias, its function is to increase 
or decrease the net input, in order to translate the activation 
function on the axis, it can also be used so that, in the network 
training process, changes in synaptic weights result in less 
drastic changes in the network as a whole since the bias is 
independent of the input value in the system, which helps 
the network to converge on an ideal solution and can also 

be used to make the value needed to activate the activation 
function larger or smaller. NNs generally have a forward 
propagation architecture where signals entering the system 
propagate towards the output in a single direction. The model 
represents artificial neurons and can be represented by the 
following equations 1 and 2 

n 

U = (L Xn X Wn) - 0 (1) 
i=l 

(2) 

The weight parameters Wn and bias 0 are adjusted in the 
training of neurons in the network according to the final 
application. 

�--
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Fig. 2: MLP network. 
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An ANN can have a different number of layers which can 
be classified into three categories: 

• Input layer: responsible for receiving data, signals, or
characteristics from the extemal environment that are
usually normalized in relation to the ranges of dynamic
variations produced by the activation functions, which
improves the accuracy of the network as a whole.

• Hidden layers: composed of neurons with the function of
extracting characteristics associated with the system to be
inferred.

• Output layer: a layer of neurons responsible for present­
ing the final results of the network, from the signals
received by the layers that precede it.

The Multiple Layer Perceptron (MLP) network contains 
at least one intermediate layer, in contrast to the single­
layer perceptron network, the MLP has one or more hidden 
or hidden layers between the input and output layers. MLP 
networks are more complex in their structure, which allows 
them to perform more complex work compared to the networks 
mentioned above and can solve problems that would go 
beyond binary classification. MLP networks have feed-forward 
regardless of the number of layers, the first layer captures the 
signals to be processed, then the intermediate layers extract 
information about the signals, process and encode through 
their respective synaptic weights, bias, and activation function 
and the output layer receives the resulting stimuli from the 
intermediate layers and produces the network response. Note 
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the rails themselves to provide more routing possibilities at 

the time ofimplementation [21], 

Fig, 6: FPGA structure representation, 

BRAMs are memories that allow fast access to data and 

have the ability to read and write data and are much more 

efficient for data storage than LUT memory implementations, 

it is also possible to access two memories in the sarne block 

simultaneously, which allows the data preloading or data 

writing and reading at the sarne instant. BRAMs can be 

inferred by the synthesis tool or can be instantiated by the 

user during design elaboration. 

DSP blocks are blocks that allow multiplication operations 

followed by result accumulation without the use of LUTs, 

DSPs have a series of configurable functional blocks, the 

DSP48El block present in FPGA Xilinx Series 7 features a 25-

by-18-bit two's complement multiplier, a 48-bit accumulator, 

a pre-adder, a block that can perform the addition, subtraction 

or accumulating result of multiple data simultaneously, a unit 

of logical operation with bits like AND, OR, NOT, NANO, 

NOR, XOR, XNOR, overflow and underflow detectors and 

configurable pipeline [17]. 

IV. METODOLOGY

For the implementation of a neural network in an FPGA, 

it was necessary to generate and train the network externally, 

for this, R and Python programming languages and the Keras 

package were used for the elaboration of the neural network 

and the export of the weights and bias of the trained network 

with MNIST dataset [22], tests were performed with different 

network configurations, such as number of layers, number of 

neurons and activation function to test the implementation in 

FPGA. 

A. Network Weights Preparation

Once the network was trained, the values of the weights

and bias of each neuron were exported and manipulated using 

Excel, with the use of formulas elaborated in the spreadsheets, 

it was possible to easily process the data for later implemen­

tation in the FPGA. For an integer implementation, the weight 

and bias values were multiplied by a multiple of 1 O, depending 

on how accurate the decimal places would be, for example, 

for three decimal places the values were multiplied by 1000, 

then rounded using the formula "=round('Nº', 'Nº of decimal

places')". The result was a number with no decimal places, for 

example, for a weight value of 0.6457, the value implemented 

in FPGA would be 646. 

For training and testing the elaborate network, the MNIST 

dataset was used, which consists ofhandmade images ofnum­

bers from O to 9, widely used for training and testing image 

processing systems, containing 60,000 images for training and 

10,000 for testing, all images are in grayscale with dimensions 

of 28x28 pixeis, so the network input will be 784, a value for 

each pixel [22]. 

B. FPGA Implementation

Tests were carried out with different types of networks in

the implementation, varying the number of layers, the number 

of neurons in each layer, except for the output layer, the type 

of activation function, the precision of decimal places, and 

the differences between implementation with number integer 

and with the library for numerical representation with fixed 

point. For the evaluation of the implementation results, the 

following parameters were observed: the response time, the 

network accuracy, the use of board resources, and the energy 

used for its operation. 

1) Block structure: For the implementation in FPGA, using

VHDL programming language, different blocks were elab­

orated that together compose the neural network elaborated 

previously. 

·B

Fig. 7: Representation of the network structure implemented 

with data storage in LUT. 

As illustrated in Fig. 7, the network has six basic blocks 

in its structure, the TOP block that receives the externai data, 

in the case of this work, receives the values of the pixeis 

of the image to be identified and provides the final response 

of the network according to the active output of the last 

layer, the neuron block, illustrated in Fig. 8, is responsible for 

weighting the inputs by synaptic weights and finally adding 

the bias, the neurons layer block is responsible for receiving 

the externai input or data from the active output of the previous 
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Fig. 8: Single neuron representation. 

layer and distribute it to all neurons contained in it, after the 

completion of the calculations performed by the neurons, the 

layer sends the accumulated output to the block containing 

the activation function stored in LUTs or in BRAM, after 

activating the outputs of the last layer, the data is sent to the 

block responsible for comparing the activated outputs of the 

last one and verifying the value most likely to be the correct 

answer. 

The VHDL code was designed in such a way that it is 

possible to modify the number of neurons and layers with 

minimal configuration of the code itself, which facilitates 

testing and adapting the code to different needs such as 

greater accuracy, fewer used resources, faster response time, 

etc. after any necessary modifications to the code, the Xilinx 

Vivado HLS tool is used to synthesize the code for RTL and 

implement it on the FPGA board. 

2) Numerical Representation: As it is not possible to syn­

thesize real numbers in VHDL, tests were carried out with two 

types of numerical representation. The first form of represen­

tation used as integers, with the arithmetic operations already 

implemented in VHDL through the numeric_std library, to 

represent decimal places the input and weight values were 

multiplied by multiples of ten, depending on the determined 

precision. For example, for the representation of two decimal 

places the values were multiplied by one hundred, and the 

remainder was rounded, the values were then transferred to 

the FPGA. 

-12.625 < O D 
·l 0.625 > .5 

12.625 > 8 D
-0.5 

-•

0.125 < .25 G 
4.625 > 4 D 

-4 

0.125 > .125 - D0.625 < 2 G
-0.125 

G 
O< .0625 - G0.625 < 1

-12.625 - D 1 , 1 , 1 ° 1 ° 11 • 1 ° 1 , 1 ° 1 

Fig. 9: Fixed point conversion. 

The other form of numerical representation used for tests 

was binary with fixed point, for that, a package was elaborated 

and implemented that includes conversion from real number to 

binary with fixed point, addition and multiplication so that it 

was possible to implement the network using such numerical 

representation. with ten bits for the decimal part, 14 bits for the 

integer part, and one bit for the sign. The conversion was done 

by an algorithm elaborated in Octave and is done in software 

before the implementation, it consists of comparisons, between 

the number you want to convert and each of the numbers that 

are represented by the bits at a fixed point, as illustrated in 

Fig, 9, 

'-----v--' 

Sl 

5.3125 • -3.375 

'-----v--' 

S2 

S1 XOR S2 = 1 

0101 0101 • 0011 0110 = 0001 0001 1110 1110 

Resultado= -17.9296875 

01° I o I o 1 1 1oIoIo1 1 1 1 1 1l1 1 1o1 1 1 1 1 1 l O 1 

Fig. 10: Fixed point multiplication. 

The implemented fixed-point number multiplication is rep­

resented in Fig. 1 O, the operation is relatively simple, perform­

ing a standard binary number multiplication and then dividing 

between the vector that represents the integer number and the 

vector that represents the decimal. ln the example, it can be 

seen that for multiplication between two numbers with four 

bits in the decimal part, the result will have the eight least 

significant bits as the decimal part. 

3) Activation Functions: Tests were performed with differ­

ent activation functions to evaluate results, mainly observing 

the accuracy and resource requirements of the FPGA used to 

implement the activation function. 

For better response times and simplicity of implementation, 

the activation functions were calculated in software with a 

programming language with a high level of Octave abstraction, 

used primarily for mathematical computation, the values were 

tabulated and stored in BRAM on the board. 

Due to optimizations made by the Xilinx Vivado HLS 

tool during synthesis and implementation, the algorithm can 

conclude that the activation function can be implemented in 

a combination of LUTs, multiplexers, and registers for better 

use of the final design area. 

The tests highlighted that implementing the activation func­

tion more efficiently is through LUTs elaborated outside the 

FPGA and stored in RAM for quick access, saving DSP blocks 

and processing time due to calculations of the implemented 

model. The test implementation of the activation function 

determined that the calculations necessary for the sigmoid 

activation function would be performed in at least four clock 

cycles for each value, however with the values in LUTs or 

RAM only one cycle is needed for each value, decreasing 
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response time without sacrificing accuracy, it is also possible 

to utilize more resources on the board to calculate the response 

of the activation function of all output values of a layer at the 

sarne time. 

4) Weight Storage: Two network models were developed

in terms of the way of storing the weights of the network, 

one of the ways was implementation directly in LUTs of the 

FPGA, once implemented the weights were stored as functions 

in LUTs, registers, and multiplexers while the other way is 

initial storage externa! value of the weights that are then stored 

in the FPGA's BRAM and during the calculations, the BRAM 

supplies the weights to the neurons, 

The process of storing the values in RAM requires in­

stantiating the blocks according to the number of neurons 

so that there is one block per neuron, so there will be no 

difference in the network response time, the process requires 

an initialization period for the data to be provided by an 

externa! source to RAM, however, it is only necessary to 

perform the process once, 

Camada 

Input l 

Input 2 

lnpul 3 

Input n 

Fig. 11: Representation of a layer with data storage in BRAM. 

Fig. 11 illustrates a layer when the method of implementing 

weights in BRAM is used, the layer block distributes the 

weights stored in RAM to the respective neurons according to 

the input, so the layer block has a vector of BRAMs, and each 

BRAM stores the weight value of each neuron in vector form, 

so that during the weighting calculation the neuron receives 

the weight corresponding to the input for each clock period. 

5) FPGA Board Used in Tests: To perform the tests, the

FPGA Basys 3 Artix-7 board was used, which has 33,280 

logic cells in 5200 slices, each containing four LUTs of six 

inputs and eight flip-flops, 50 RAM blocks of 1,800 Kbits 

each, 90 DSP48El slices. For the implementation, 100MHz 

was used as clock time [ 17]. 

V, RESULTS 

A. Parallelism

The initial implementation had total parallelism, with a

completely asynchronous network it was possible to perform 

all the necessary calculations in parallel and obtain the result 

in the picoseconds scale, however for a small network of ten 

neurons in the hidden layer and ten in the layer of output were 

used around 103800 LUTs and more than 10000 DSP slices 

making the implementation unfeasible for the board available 

for testing. 

Based on this experience, it was decided to perform the 

calculations synchronously, but many of the calculations are 

still performed in parallel. Toe network was then modified to 

perform the multiplication and accumulation calculations for 

each neuron synchronously, so that each multiplication and 

addition calculation for a neuron takes three clock cycles at 

100MHz to perform, conserving board resources in exchange 

for a longer response time, but this allows all neurons to 

perform calculations in parallel so that the number of neurons 

in the hidden layer minimally changes the total response time 

of the layer, but increases the number of input values of the 

next layer which increases the response time on the order 

of approximately 20ns per neuron. With the reduction of 

parallelism, it was possible to reduce the resources used by 

the implemented network considerably. 

B, Decimal Place Precision and Numeric Representation 

The variation of the precision of decimal places allows both 

savings in the use of resources on the board with the use 

of less precision, while greater precision guarantees greater 

accuracy of the network in exchange for a greater number 

of resources used, both in the implementation with integers 

and in the implementation with fixed point. tests were carried 

out with a different number of decimal places to verify the 

use of resources. Table I and II demonstrates the test results 

for the implementation with two and three decimal points, 

respectively, while Table III test results for the fixed point 

implementation. 

Varying decimal places and comparing with the fmal ac­

curacy of the network, it was determined that even using 

more resources, the implementation with greater precision of 

decimal places, both in the case of the use of integers, as in 

the use of 25 bits at a fixed point, offered better results, since 

better network accuracy is expected due to higher numerical 

prec1s10n. 

C, Network Design 

The VHDL code was designed in such a way that it allows 

flexibility both in the number of neurons and in the number of 

intermediate layers and also in the number of input values in 

the network, to be able to adapt the implementation according 

to the need, without being limited for the MNIST dataset [22], 

to only one model or the board used for the tests performed 

in this work. 

Tests were carried out with different numbers of layers 

and neurons, which varies the number of resources used, the 
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TABLE I: Integer implementation results with two decimal places of precision. 

Integer - 2 decimal places 784x10x10 784x15x10 784x30x10 784x45x10 784x100x10 784x10x10x10 
LUTs 6273 7704 11979 13960 33117 7811 
DSP 10 25 40 55 100 30 

BRAM(18KBits) 10 15 30 45 50 30 
Registers 2023 2320 3240 4372 8377 2483 
F7MUX 323 546 973 2330 3229 682 
F8 MUX 50 101 150 846 648 168 

Original accuracy 92,75% 94,92% 96,70% 97,55% 97,88% 92,42% 
Energy consumption 0,133W 0,184W 0,190W 0,197W * 0,211W

Response time 23.77µs 23.97µs 24.57 µs 25.17µs 27.37µs 47.85µs

TABLE II: lnteger implementation results with three decimal places ofprecision. 

Integer - 3 decimal places 784x10x10 784xl5xl0 784x30xl0 784x45x10 784x100x10 784x10x10x10 
LUTs 9655 11300 13518 17559 27854 14132 
DSP 20 25 40 55 110 30 

BRAM(18KBits) o 15 30 45 50 20 
Registers 2955 3026 3423 4460 9652 3358 
F7MUX 1357 1187 1333 1689 3152 1493 
F8 MUX 220 228 249 263 740 304 

Original accuracy 92,75% 94,92% 96,70% 97,55% 97,88% 92,42% 
Energy consumption 0,259W 0,274W 0,307W 0,312W * 0,288W

Response time 23.77µs 23.97µs 24.57 µs 25.17µs 27.37µs 47.85µs

T ABLE III: Implementation results with fixed-point binary. 

Fixed point - 25 bits 784x10x10 784x15x10 784x30x10 784x45x10 784x100x10 784x10x10x10 

LUTs 7863 8344 

DSP 20 25 

BRAM(l 8KBits) 10 15 

Registers 2506 2729 

F7MUX 1146 917 

F8MUX 323 128 

Original accuracy 0,9275 0,9492 

Energy consumption .179W .186W 

Response time 23.77µs 23.97µs 

accuracy of the model, and the response time of the network, 
aft er different tests it was concluded that networks with more 
than one layer did not only consumed more resources and more 
time, as they did not guarantee better results in the accuracy 
of the network in general, the network response time being 
independent of the number of neurons, since all neurons in 
a layer perform calculations in parallel, the network is more 
effective, both in response time and accuracy, by increasing 
the number of neurons in the hidden layer. 

D. Activation Function

Tests were performed with different activation functions,
taking into account the accuracy of the elaborated network 
and the consumption of resources on the board, as the output 
layer needs the Sigmoid or SoftMax activation function, tests 

10573 12792 22570 9532 

40 55 110 30 

40 45 50 20 

3693 4888 8762 3058 

1242 1799 3420 1493 

157 217 613 304 

0,967 0,9755 0,9788 0,9242 

.26W .198W * .192W 

24.57µs 25.17µs 27.37µs 47.85µs 

were carried out with the two functions that presented the best 
accuracy during training was Sigmoid and as the number of 
resources consumed when implementing any of the functions 
is similar, around 2000 LUTs or tive BRAMs for implemen­
tation with integers with three places of precision and binary 
with fixed point and around 1000 LUTs for precision with two 
decimal places the most used features in the implementations, 
the tests were carried out with Sigmoid, while the activation 
function of the middle layer were carried out tests with dif­
ferent activation functions as mentioned above and hyperbolic 
tangent and RELU, the tests carried out demonstrated that the 
hyperbolic tangent activation function has lower accuracy and 
would consume more board resources than the function RELU 
which also had better accuracy compared to Sigmoid. 
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Observing the results of test implementations, it can be 

concluded that the number of neurons directly affects the 

resources used by the network and the expected accuracy, 

while the number oflayers also affects the accuracy, consumes 

more energy and more resources, and increases the response 

time without a significant increase in. 

Comparing the results of integers with representation using 

binary with a fixed point we can see that there is significant 

conservation of resources and less consumption of energy, the 

only obstacle is the conversion of the input data to binary with 

a fixed point since the algorithm runs extemally, the data needs 

treatment before processing, which would make the network 

response time larger. 

E. Comparison with CPU and GPU Acceleration

The response time in the different tests performed with

the hardware implementation was measured and compared 

with the results of the software implementation using different 

tools. For testing with CPU, a test was carried out with Intel 

i7-6700K 4.00 GHz and 16 GB of RAM, it was also carried 

out in a Kaggle virtual environment, and the results showed 

an average response time of 20ms for each image, compared 

with the response time of one-layer network with 45 neurons 

implemented in 25 .17 µs FPGA, it is possible to notice that the 

response time is considerably lower. It was also compared to 

GPU acceleration on both an Nvidia GTX 980TI GPU with 

6Gb of dedicated video RAM and a virtual environment so the 

time reduction was not very significant, reducing the average 

response time for individual images to 18ms. 

VI. DISSCUSION

Regarding the network accuracy, it is possible to notice 

that the consumption of resources is directly related to the 

precision of decimal places of the network, which affects the 

final accuracy of the implementation, with the calculated error 

we can estimate the accuracy of the network according to the 

expected results. 

Taking the results of tests carried out with the network 

implemented with a response time of 25. l 7us and considering 

the average speed of a commercial aircraft as 300 km/h, we can 

estimate that, with the network response time, the plane would 

travel 0.0020975 meters or 2.0975 millimeters approximately, 

between the input of the image and the decision making, 

considering that the response time depends directly on the 

number of inputs in the network, even if the number of inputs 

was ten times greater, the plane would still travel less than 

one meter between image input and decision making. 

There is the possibility of using boards with a greater 

number of resources to implement networks with a greater 

number of inputs, neurons, and layers. 

The greatest demand of convolutional networks is the 

memory to store parameters and processing power to perform 

arithmetic and logic operations the main components of FPGA 

for neural networks are LUTs, BRAM, and DSPs. 

VII. FINAL CONSIDERATIONS

Considering the results acquired through the tests of the 

research carried out, it can be concluded that the implemen­

tation of neural networks for image recognition in FPGA has 

enormous potential for reducing response time, in addition to 

being economical in terms of energy consumed. 

Initial comparisons with CPUs and GPUs show a significant 

reduction in response time with the potential for optimizations 

in the implementation to obtain even better results, in addition, 

the FPGA implementation allows flexibility in updating the 

network if necessary, complemented by the fact that the code 

is itself flexible. 

A. OPTIMIZATION PROPOSALS

As previously mentioned, there are several ways to imple­

ment neural networks for image recognition in FPGAs, being 

important factors: the number of input values (pixels), the 

number of dense layers, the number of neurons in each layer, 

the representation number and its precision. All these factors 

influence the complexity of the calculations performed, the 

consumption of logical resources, memory and power on the 

board, and the total time required for image processing. 

There are a series of optimizations that are possible to 

perform in the model elaborated, in future works, which could 

further reduce the response time and improve the consumption 

of resources by the model, some of these improvements are: 

• Develop a controller unit for the arithmetic operations

performed by the network, thus improving the use of

DSPs, using fewer LUTs, and enabling greater paral­

lelism of the calculations performed, limited only by the

amount of DSPs on the FPGA board.

• Greater parallelization of the calculations performed,

since the calculations consume more time in image pro­

cessing, using techniques such as parallel reduction could

considerably reduce the response time in exchange for

greater consumption of resources and energy per image.

B. FUTURE WORKS

The focus of this work was to evaluate the response time

for calculations performed by a neural network developed for 

image recognition, also considering the use of resources and 

the energy consumed during tests performed with different 

parameters, but due to the time required, in addition to limita­

tions ofresources on the board used for tests for studies carried 

out on neural networks, FPGA, VHDL, and implementation 

techniques. It was not possible to implement different types of 

layers such as the convolution layer and the max pooling layer 

to test convolutional neural networks completely implemented 

in FPGAs, considering that the code elaborated is flexible in 

terms of the number of input values, number of layers and 

amount of neurons per layer, it is possible to continue the 

work in the future with the development of convolution and 

max pooling layers and integrate them into the work already 

done. Due to the difficulties oftesting large amounts ofimages 

to verify the accuracy of the network, it would be necessary 
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to devise a way to send images quickly to the board to verify 
the accuracy of the implementation, 
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