
CITE THIS ARTICLE

Victor Mendonça Aguirre

Fadi Jerji

Aguirre, Victor Mendonça; Jerji, Fadi; 2022. lmplementation of convolutional NEURAL network in FPGA for image recognition. SET INTERNATIONAL
JOURNAL OF BROADCAST ENGINEERING. ISSN Print: 2446-9246 ISSN Online: 2446-9432. doi: 10.18580/setijbe.2022.4. Web Link: http://dx.doi.or­
g/10.18580/setijbe.2022.4

cQ G) �COPYRIGHT This work is made available under the (reative Commons - 4.0 lnternational License. Reproduction in whole or in part
i�:::&1-m,1111!!!!!!!!!-is permitted provided the source is acknowledged.

46

Implementation of convolutional NEURAL

network in FPGA for image recognition

Abstract-Neural Networks (NN) are being researched and
improved to a degree that machines can closely resemble the
capacity to execute complex tasks that only an intelligent animal
is capable of. Vision used in the interpretation and recognition
of the environment is one of such tasks that is being researched
so future technologies can simulate vision in autonomous vehi­
cles to further improve self-driving capabilities, increase driver
convenience, help avoid accidents, and even autonomous delivery.
Convolutional neural networks, inspired by the mechanics of ani­
mal vision, are utilized for the complex task of image recognition.
Field Programmable Gate-Arrays (FPGA) recent developments
have given it more parallel processing and processing speed
making it a prime candidate for the implementation of NNs
efficiently, with more processing capabilities and low response
times compared with the alternatives. The objective of this work
is to evaluate the performance viability of FPGA implementation
of an image classification NN with acceptable accuracy and low
response time.

Index Terms-FPGA; CNN; autonomous vehicles; MNIST.

1. INTRODUCTION

Artificial intelligence has attracted attention from the most
varied types of industries, with several studies being carried
out on the subject and with recent advances in hardware,
increasingly complex algorithms are being developed with
adequate processing time, making it possible to derive useful
and fast information from large amounts of information, but
the question of efficient hardware implementation remains to
execute these algorithms quickly and efficiently.

Along with the development of techniques and studies,
the applications of convolutional neural networks (CNNs)
have grown considerably, mainly in activities that require
understanding at a level comparable to that of a human being,
such as natural language processing and computer vision and it
is possible to incorporate CNNs to assist in processing audio,
image classification, scenario labeling, and facial recognition
[1], [2]. Some networks achieve better results than human
performance as evidenced in the work of [3]. The impressive
performance of these networks comes at the cost of large
memory bandwidth and intensive use of computational logical
resources [4].

CNNs have excellent performance when it comes to image
classification, but such networks require millions or even

2nd Fadi Jerji
Mackenzie Presbyterian University

são Paulo, Brazil
fadi.jerji@gmail.com

billions of operations per second to classify an image, which
makes network implementation a challenge in terms of com­
putational power and memory storage capacity. For example,
in 2012 Alexnet [5], with a network architecture that required
the storage of 60 million parameters to process an image, won
the Imagenet contest [6]. ln 2014 the VGGNET network [7]
wins the sarne contest, but its design required loading about
seven times more parameters, because of this, the network
required dedicated hardware to run.

CNNs have enabled the increasing automation of tasks
and machines such as autonomous cars, the idea of product
delivery via drone is already being discussed [8], but in the
sarne way, as autonomous cars require a large amount of
information and an equally large processing power together
with a robust algorithm to detect and recognize obstacles
[9], drones or autonomous aircraft require an even faster
processing and image recognition capacity. To be able to
follow the movements and maneuvers performed by these
vehicles. The choice of hardware for implementing CNNs
is important because it will influence the needs and results
of the network, for training the choice mostly adopted is
a graphics processing unit (GPU), due to its great capacity
for parallelism of calculations, reaching 11 trillion floating
point operations per second (TFLOP/s) and due to the need
to train the neural network only once, the GPU's energy
consumption does not significantly impact the process, as for
the implementation of the network in themselves, they can
be implemented either on GPU, Field Programmable Gate­
Arrays (FPGA) or Central Processing Unit (CPU), being more
flexible FPGAs when compared to ASICs, counting on easy
and fast implementation in the market and upgradeability even
after implementation compared to CPU and it is also worth
mentioning its potential for improving the architecture, energy
savings compared to GPU and the possibility ofusing different
formats and numerical representations. Microsoft has recently
explored the possibility of CNNs on FPGAs as cost-effective
network accelerators in a data center [10], [11]. Many studies
are being carried out on accelerators for CNNs implemented in
FPGAs [12], [13], as well as tools to generate such accelerators
automatically [14], [15]. Studies have also been carried out on

Th1s open access article Is distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http //www sei org.br/1Jbe/ do, l 0.18580/setiJbe 2022.4 Web Link http //dx doi.org/10.18580/setiJbe.2022 4

47

1 st Victor Mendonça Aguirre

Mackenzie Presbyterian University

são Paulo, Brazil
victor.1605@hotmail.com

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 4, 9p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print)· 2446-9246/ISSN (Online): 2446-9432

CNNs networks with low accuracy, networks using weights
and activation function with numbers in binary format [6], [16]
and in some cases, the network has an accuracy comparable
to networks using 32-bit floating point, these types of imple­
mentation are attractive in FPGAs because they take advantage
of the efficiency of operations performed on Look Up Tables
(LUTs), The implementation in FPGAs has seen more and
more attention due to the constant development of tools that
help and automate the development of implementations on
the board, the Xilinx Vivado tool for high-level synthesis
(HLS) allows the user to write code with a reasonable level
of abstraction and the tool's algorithm compiles the code for
register transfer level (RTL) between registers [17],

For complex tasks that require a large number of cal­
culations, but which, at the sarne time, demand efficiency
and low response time, CNN in FPGA focused on image
recognition would be a tool that would drive the development
and implementation of such technologies to advance sectors
that would benefit from autonomous aerial vehicles and make
the autonomous car industry even more robust.

II. NEURAL NETWORKS

A fundamental component of neural networks, in general,
are artificial neurons, inspired by biological neurons, which are
responsible for most of the processing that occurs in artificial
neural networks (ANN s) and can be arranged within a network
in various ways,

-9

X,

t---u-�8------ y

Xn

Fig. 1: Perceptron.

It's possible to observe the general structure of a neuron
or perceptron in Fig. 1 where from Xó to Xn representing
input data or signals from neurons from another layer, the
synaptic weights Wo to Wn that determine how excitatory
or inhibitory the signal is for the neuron. The adder block
is responsible for summing the modified input signals with a
predetermined value 0 called bias, its function is to increase
or decrease the net input, in order to translate the activation
function on the axis, it can also be used so that, in the network
training process, changes in synaptic weights result in less
drastic changes in the network as a whole since the bias is
independent of the input value in the system, which helps
the network to converge on an ideal solution and can also

be used to make the value needed to activate the activation
function larger or smaller. NNs generally have a forward
propagation architecture where signals entering the system
propagate towards the output in a single direction. The model
represents artificial neurons and can be represented by the
following equations 1 and 2

n

U = (L Xn X Wn) - 0 (1)
i=l

(2)

The weight parameters Wn and bias 0 are adjusted in the
training of neurons in the network according to the final
application.

�--

1

(""1)

Fig. 2: MLP network.

Cll!Ndadl-saída
(1r=3)

An ANN can have a different number of layers which can
be classified into three categories:

• Input layer: responsible for receiving data, signals, or
characteristics from the extemal environment that are
usually normalized in relation to the ranges of dynamic
variations produced by the activation functions, which
improves the accuracy of the network as a whole.

• Hidden layers: composed of neurons with the function of
extracting characteristics associated with the system to be
inferred.

• Output layer: a layer of neurons responsible for present­
ing the final results of the network, from the signals
received by the layers that precede it.

The Multiple Layer Perceptron (MLP) network contains
at least one intermediate layer, in contrast to the single­
layer perceptron network, the MLP has one or more hidden
or hidden layers between the input and output layers. MLP
networks are more complex in their structure, which allows
them to perform more complex work compared to the networks
mentioned above and can solve problems that would go
beyond binary classification. MLP networks have feed-forward
regardless of the number of layers, the first layer captures the
signals to be processed, then the intermediate layers extract
information about the signals, process and encode through
their respective synaptic weights, bias, and activation function
and the output layer receives the resulting stimuli from the
intermediate layers and produces the network response. Note

Th1s open access article Is distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http //www sei org.br/1Jbe/ do, l 0.18580/setiJbe 2022.4 Web Link http //dx doi.org/10.18580/setiJbe.2022 4

48

49

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 4, 9p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print)· 2446-9246/ISSN (Online): 2446-9432

the rails themselves to provide more routing possibilities at

the time ofimplementation [21],

Fig, 6: FPGA structure representation,

BRAMs are memories that allow fast access to data and

have the ability to read and write data and are much more

efficient for data storage than LUT memory implementations,

it is also possible to access two memories in the sarne block

simultaneously, which allows the data preloading or data

writing and reading at the sarne instant. BRAMs can be

inferred by the synthesis tool or can be instantiated by the

user during design elaboration.

DSP blocks are blocks that allow multiplication operations

followed by result accumulation without the use of LUTs,

DSPs have a series of configurable functional blocks, the

DSP48El block present in FPGA Xilinx Series 7 features a 25-

by-18-bit two's complement multiplier, a 48-bit accumulator,

a pre-adder, a block that can perform the addition, subtraction

or accumulating result of multiple data simultaneously, a unit

of logical operation with bits like AND, OR, NOT, NANO,

NOR, XOR, XNOR, overflow and underflow detectors and

configurable pipeline [17].

IV. METODOLOGY

For the implementation of a neural network in an FPGA,

it was necessary to generate and train the network externally,

for this, R and Python programming languages and the Keras

package were used for the elaboration of the neural network

and the export of the weights and bias of the trained network

with MNIST dataset [22], tests were performed with different

network configurations, such as number of layers, number of

neurons and activation function to test the implementation in

FPGA.

A. Network Weights Preparation

Once the network was trained, the values of the weights

and bias of each neuron were exported and manipulated using

Excel, with the use of formulas elaborated in the spreadsheets,

it was possible to easily process the data for later implemen­

tation in the FPGA. For an integer implementation, the weight

and bias values were multiplied by a multiple of 1 O, depending

on how accurate the decimal places would be, for example,

for three decimal places the values were multiplied by 1000,

then rounded using the formula "=round('Nº', 'Nº of decimal

places')". The result was a number with no decimal places, for

example, for a weight value of 0.6457, the value implemented

in FPGA would be 646.

For training and testing the elaborate network, the MNIST

dataset was used, which consists ofhandmade images ofnum­

bers from O to 9, widely used for training and testing image

processing systems, containing 60,000 images for training and

10,000 for testing, all images are in grayscale with dimensions

of 28x28 pixeis, so the network input will be 784, a value for

each pixel [22].

B. FPGA Implementation

Tests were carried out with different types of networks in

the implementation, varying the number of layers, the number

of neurons in each layer, except for the output layer, the type

of activation function, the precision of decimal places, and

the differences between implementation with number integer

and with the library for numerical representation with fixed

point. For the evaluation of the implementation results, the

following parameters were observed: the response time, the

network accuracy, the use of board resources, and the energy

used for its operation.

1) Block structure: For the implementation in FPGA, using

VHDL programming language, different blocks were elab­

orated that together compose the neural network elaborated

previously.

·B

Fig. 7: Representation of the network structure implemented

with data storage in LUT.

As illustrated in Fig. 7, the network has six basic blocks

in its structure, the TOP block that receives the externai data,

in the case of this work, receives the values of the pixeis

of the image to be identified and provides the final response

of the network according to the active output of the last

layer, the neuron block, illustrated in Fig. 8, is responsible for

weighting the inputs by synaptic weights and finally adding

the bias, the neurons layer block is responsible for receiving

the externai input or data from the active output of the previous

Th1s open access article Is distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http //www sei org.br/1Jbe/ do, l 0.18580/setiJbe 2022.4 Web Link http //dx doi.org/10.18580/setiJbe.2022 4

50

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 4, 9p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print)· 2446-9246/ISSN (Online): 2446-9432

Fig. 8: Single neuron representation.

layer and distribute it to all neurons contained in it, after the

completion of the calculations performed by the neurons, the

layer sends the accumulated output to the block containing

the activation function stored in LUTs or in BRAM, after

activating the outputs of the last layer, the data is sent to the

block responsible for comparing the activated outputs of the

last one and verifying the value most likely to be the correct

answer.

The VHDL code was designed in such a way that it is

possible to modify the number of neurons and layers with

minimal configuration of the code itself, which facilitates

testing and adapting the code to different needs such as

greater accuracy, fewer used resources, faster response time,

etc. after any necessary modifications to the code, the Xilinx

Vivado HLS tool is used to synthesize the code for RTL and

implement it on the FPGA board.

2) Numerical Representation: As it is not possible to syn­

thesize real numbers in VHDL, tests were carried out with two

types of numerical representation. The first form of represen­

tation used as integers, with the arithmetic operations already

implemented in VHDL through the numeric_std library, to

represent decimal places the input and weight values were

multiplied by multiples of ten, depending on the determined

precision. For example, for the representation of two decimal

places the values were multiplied by one hundred, and the

remainder was rounded, the values were then transferred to

the FPGA.

-12.625 < O D
·l 0.625 > .5

12.625 > 8 D
-0.5

-•

0.125 < .25 G
4.625 > 4 D

-4

0.125 > .125 - D0.625 < 2 G
-0.125

G
O< .0625 - G0.625 < 1

-12.625 - D 1 , 1 , 1 ° 1 ° 11 • 1 ° 1 , 1 ° 1

Fig. 9: Fixed point conversion.

The other form of numerical representation used for tests

was binary with fixed point, for that, a package was elaborated

and implemented that includes conversion from real number to

binary with fixed point, addition and multiplication so that it

was possible to implement the network using such numerical

representation. with ten bits for the decimal part, 14 bits for the

integer part, and one bit for the sign. The conversion was done

by an algorithm elaborated in Octave and is done in software

before the implementation, it consists of comparisons, between

the number you want to convert and each of the numbers that

are represented by the bits at a fixed point, as illustrated in

Fig, 9,

'-----v--'

Sl

5.3125 • -3.375

'-----v--'

S2

S1 XOR S2 = 1

0101 0101 • 0011 0110 = 0001 0001 1110 1110

Resultado= -17.9296875

01° I o I o 1 1 1oIoIo1 1 1 1 1 1l1 1 1o1 1 1 1 1 1 l O 1

Fig. 10: Fixed point multiplication.

The implemented fixed-point number multiplication is rep­

resented in Fig. 1 O, the operation is relatively simple, perform­

ing a standard binary number multiplication and then dividing

between the vector that represents the integer number and the

vector that represents the decimal. ln the example, it can be

seen that for multiplication between two numbers with four

bits in the decimal part, the result will have the eight least

significant bits as the decimal part.

3) Activation Functions: Tests were performed with differ­

ent activation functions to evaluate results, mainly observing

the accuracy and resource requirements of the FPGA used to

implement the activation function.

For better response times and simplicity of implementation,

the activation functions were calculated in software with a

programming language with a high level of Octave abstraction,

used primarily for mathematical computation, the values were

tabulated and stored in BRAM on the board.

Due to optimizations made by the Xilinx Vivado HLS

tool during synthesis and implementation, the algorithm can

conclude that the activation function can be implemented in

a combination of LUTs, multiplexers, and registers for better

use of the final design area.

The tests highlighted that implementing the activation func­

tion more efficiently is through LUTs elaborated outside the

FPGA and stored in RAM for quick access, saving DSP blocks

and processing time due to calculations of the implemented

model. The test implementation of the activation function

determined that the calculations necessary for the sigmoid

activation function would be performed in at least four clock

cycles for each value, however with the values in LUTs or

RAM only one cycle is needed for each value, decreasing

Th1s open access article Is distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http //www sei org.br/1Jbe/ do, l 0.18580/setiJbe 2022.4 Web Link http //dx doi.org/10.18580/setiJbe.2022 4

51

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 4, 9p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print)· 2446-9246/ISSN (Online): 2446-9432

response time without sacrificing accuracy, it is also possible

to utilize more resources on the board to calculate the response

of the activation function of all output values of a layer at the

sarne time.

4) Weight Storage: Two network models were developed

in terms of the way of storing the weights of the network,

one of the ways was implementation directly in LUTs of the

FPGA, once implemented the weights were stored as functions

in LUTs, registers, and multiplexers while the other way is

initial storage externa! value of the weights that are then stored

in the FPGA's BRAM and during the calculations, the BRAM

supplies the weights to the neurons,

The process of storing the values in RAM requires in­

stantiating the blocks according to the number of neurons

so that there is one block per neuron, so there will be no

difference in the network response time, the process requires

an initialization period for the data to be provided by an

externa! source to RAM, however, it is only necessary to

perform the process once,

Camada

Input l

Input 2

lnpul 3

Input n

Fig. 11: Representation of a layer with data storage in BRAM.

Fig. 11 illustrates a layer when the method of implementing

weights in BRAM is used, the layer block distributes the

weights stored in RAM to the respective neurons according to

the input, so the layer block has a vector of BRAMs, and each

BRAM stores the weight value of each neuron in vector form,

so that during the weighting calculation the neuron receives

the weight corresponding to the input for each clock period.

5) FPGA Board Used in Tests: To perform the tests, the

FPGA Basys 3 Artix-7 board was used, which has 33,280

logic cells in 5200 slices, each containing four LUTs of six

inputs and eight flip-flops, 50 RAM blocks of 1,800 Kbits

each, 90 DSP48El slices. For the implementation, 100MHz

was used as clock time [17].

V, RESULTS

A. Parallelism

The initial implementation had total parallelism, with a

completely asynchronous network it was possible to perform

all the necessary calculations in parallel and obtain the result

in the picoseconds scale, however for a small network of ten

neurons in the hidden layer and ten in the layer of output were

used around 103800 LUTs and more than 10000 DSP slices

making the implementation unfeasible for the board available

for testing.

Based on this experience, it was decided to perform the

calculations synchronously, but many of the calculations are

still performed in parallel. Toe network was then modified to

perform the multiplication and accumulation calculations for

each neuron synchronously, so that each multiplication and

addition calculation for a neuron takes three clock cycles at

100MHz to perform, conserving board resources in exchange

for a longer response time, but this allows all neurons to

perform calculations in parallel so that the number of neurons

in the hidden layer minimally changes the total response time

of the layer, but increases the number of input values of the

next layer which increases the response time on the order

of approximately 20ns per neuron. With the reduction of

parallelism, it was possible to reduce the resources used by

the implemented network considerably.

B, Decimal Place Precision and Numeric Representation

The variation of the precision of decimal places allows both

savings in the use of resources on the board with the use

of less precision, while greater precision guarantees greater

accuracy of the network in exchange for a greater number

of resources used, both in the implementation with integers

and in the implementation with fixed point. tests were carried

out with a different number of decimal places to verify the

use of resources. Table I and II demonstrates the test results

for the implementation with two and three decimal points,

respectively, while Table III test results for the fixed point

implementation.

Varying decimal places and comparing with the fmal ac­

curacy of the network, it was determined that even using

more resources, the implementation with greater precision of

decimal places, both in the case of the use of integers, as in

the use of 25 bits at a fixed point, offered better results, since

better network accuracy is expected due to higher numerical

prec1s10n.

C, Network Design

The VHDL code was designed in such a way that it allows

flexibility both in the number of neurons and in the number of

intermediate layers and also in the number of input values in

the network, to be able to adapt the implementation according

to the need, without being limited for the MNIST dataset [22],

to only one model or the board used for the tests performed

in this work.

Tests were carried out with different numbers of layers

and neurons, which varies the number of resources used, the

Th1s open access article Is distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http //www sei org.br/1Jbe/ do, l 0.18580/setiJbe 2022.4 Web Link http //dx doi.org/10.18580/setiJbe.2022 4

52

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 4, 9p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print)· 2446-9246/ISSN (Online): 2446-9432

TABLE I: Integer implementation results with two decimal places of precision.

Integer - 2 decimal places 784x10x10 784x15x10 784x30x10 784x45x10 784x100x10 784x10x10x10
LUTs 6273 7704 11979 13960 33117 7811
DSP 10 25 40 55 100 30

BRAM(18KBits) 10 15 30 45 50 30
Registers 2023 2320 3240 4372 8377 2483
F7MUX 323 546 973 2330 3229 682
F8 MUX 50 101 150 846 648 168

Original accuracy 92,75% 94,92% 96,70% 97,55% 97,88% 92,42%
Energy consumption 0,133W 0,184W 0,190W 0,197W * 0,211W

Response time 23.77µs 23.97µs 24.57 µs 25.17µs 27.37µs 47.85µs

TABLE II: lnteger implementation results with three decimal places ofprecision.

Integer - 3 decimal places 784x10x10 784xl5xl0 784x30xl0 784x45x10 784x100x10 784x10x10x10
LUTs 9655 11300 13518 17559 27854 14132
DSP 20 25 40 55 110 30

BRAM(18KBits) o 15 30 45 50 20
Registers 2955 3026 3423 4460 9652 3358
F7MUX 1357 1187 1333 1689 3152 1493
F8 MUX 220 228 249 263 740 304

Original accuracy 92,75% 94,92% 96,70% 97,55% 97,88% 92,42%
Energy consumption 0,259W 0,274W 0,307W 0,312W * 0,288W

Response time 23.77µs 23.97µs 24.57 µs 25.17µs 27.37µs 47.85µs

T ABLE III: Implementation results with fixed-point binary.

Fixed point - 25 bits 784x10x10 784x15x10 784x30x10 784x45x10 784x100x10 784x10x10x10

LUTs 7863 8344

DSP 20 25

BRAM(l 8KBits) 10 15

Registers 2506 2729

F7MUX 1146 917

F8MUX 323 128

Original accuracy 0,9275 0,9492

Energy consumption .179W .186W

Response time 23.77µs 23.97µs

accuracy of the model, and the response time of the network,
aft er different tests it was concluded that networks with more
than one layer did not only consumed more resources and more
time, as they did not guarantee better results in the accuracy
of the network in general, the network response time being
independent of the number of neurons, since all neurons in
a layer perform calculations in parallel, the network is more
effective, both in response time and accuracy, by increasing
the number of neurons in the hidden layer.

D. Activation Function

Tests were performed with different activation functions,
taking into account the accuracy of the elaborated network
and the consumption of resources on the board, as the output
layer needs the Sigmoid or SoftMax activation function, tests

10573 12792 22570 9532

40 55 110 30

40 45 50 20

3693 4888 8762 3058

1242 1799 3420 1493

157 217 613 304

0,967 0,9755 0,9788 0,9242

.26W .198W * .192W

24.57µs 25.17µs 27.37µs 47.85µs

were carried out with the two functions that presented the best
accuracy during training was Sigmoid and as the number of
resources consumed when implementing any of the functions
is similar, around 2000 LUTs or tive BRAMs for implemen­
tation with integers with three places of precision and binary
with fixed point and around 1000 LUTs for precision with two
decimal places the most used features in the implementations,
the tests were carried out with Sigmoid, while the activation
function of the middle layer were carried out tests with dif­
ferent activation functions as mentioned above and hyperbolic
tangent and RELU, the tests carried out demonstrated that the
hyperbolic tangent activation function has lower accuracy and
would consume more board resources than the function RELU
which also had better accuracy compared to Sigmoid.

Th1s open access article Is distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http //www sei org.br/1Jbe/ do, l 0.18580/setiJbe 2022.4 Web Link http //dx doi.org/10.18580/setiJbe.2022 4

53

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 4, 9p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print)· 2446-9246/ISSN (Online): 2446-9432

Observing the results of test implementations, it can be

concluded that the number of neurons directly affects the

resources used by the network and the expected accuracy,

while the number oflayers also affects the accuracy, consumes

more energy and more resources, and increases the response

time without a significant increase in.

Comparing the results of integers with representation using

binary with a fixed point we can see that there is significant

conservation of resources and less consumption of energy, the

only obstacle is the conversion of the input data to binary with

a fixed point since the algorithm runs extemally, the data needs

treatment before processing, which would make the network

response time larger.

E. Comparison with CPU and GPU Acceleration

The response time in the different tests performed with

the hardware implementation was measured and compared

with the results of the software implementation using different

tools. For testing with CPU, a test was carried out with Intel

i7-6700K 4.00 GHz and 16 GB of RAM, it was also carried

out in a Kaggle virtual environment, and the results showed

an average response time of 20ms for each image, compared

with the response time of one-layer network with 45 neurons

implemented in 25 .17 µs FPGA, it is possible to notice that the

response time is considerably lower. It was also compared to

GPU acceleration on both an Nvidia GTX 980TI GPU with

6Gb of dedicated video RAM and a virtual environment so the

time reduction was not very significant, reducing the average

response time for individual images to 18ms.

VI. DISSCUSION

Regarding the network accuracy, it is possible to notice

that the consumption of resources is directly related to the

precision of decimal places of the network, which affects the

final accuracy of the implementation, with the calculated error

we can estimate the accuracy of the network according to the

expected results.

Taking the results of tests carried out with the network

implemented with a response time of 25. l 7us and considering

the average speed of a commercial aircraft as 300 km/h, we can

estimate that, with the network response time, the plane would

travel 0.0020975 meters or 2.0975 millimeters approximately,

between the input of the image and the decision making,

considering that the response time depends directly on the

number of inputs in the network, even if the number of inputs

was ten times greater, the plane would still travel less than

one meter between image input and decision making.

There is the possibility of using boards with a greater

number of resources to implement networks with a greater

number of inputs, neurons, and layers.

The greatest demand of convolutional networks is the

memory to store parameters and processing power to perform

arithmetic and logic operations the main components of FPGA

for neural networks are LUTs, BRAM, and DSPs.

VII. FINAL CONSIDERATIONS

Considering the results acquired through the tests of the

research carried out, it can be concluded that the implemen­

tation of neural networks for image recognition in FPGA has

enormous potential for reducing response time, in addition to

being economical in terms of energy consumed.

Initial comparisons with CPUs and GPUs show a significant

reduction in response time with the potential for optimizations

in the implementation to obtain even better results, in addition,

the FPGA implementation allows flexibility in updating the

network if necessary, complemented by the fact that the code

is itself flexible.

A. OPTIMIZATION PROPOSALS

As previously mentioned, there are several ways to imple­

ment neural networks for image recognition in FPGAs, being

important factors: the number of input values (pixels), the

number of dense layers, the number of neurons in each layer,

the representation number and its precision. All these factors

influence the complexity of the calculations performed, the

consumption of logical resources, memory and power on the

board, and the total time required for image processing.

There are a series of optimizations that are possible to

perform in the model elaborated, in future works, which could

further reduce the response time and improve the consumption

of resources by the model, some of these improvements are:

• Develop a controller unit for the arithmetic operations

performed by the network, thus improving the use of

DSPs, using fewer LUTs, and enabling greater paral­

lelism of the calculations performed, limited only by the

amount of DSPs on the FPGA board.

• Greater parallelization of the calculations performed,

since the calculations consume more time in image pro­

cessing, using techniques such as parallel reduction could

considerably reduce the response time in exchange for

greater consumption of resources and energy per image.

B. FUTURE WORKS

The focus of this work was to evaluate the response time

for calculations performed by a neural network developed for

image recognition, also considering the use of resources and

the energy consumed during tests performed with different

parameters, but due to the time required, in addition to limita­

tions ofresources on the board used for tests for studies carried

out on neural networks, FPGA, VHDL, and implementation

techniques. It was not possible to implement different types of

layers such as the convolution layer and the max pooling layer

to test convolutional neural networks completely implemented

in FPGAs, considering that the code elaborated is flexible in

terms of the number of input values, number of layers and

amount of neurons per layer, it is possible to continue the

work in the future with the development of convolution and

max pooling layers and integrate them into the work already

done. Due to the difficulties oftesting large amounts ofimages

to verify the accuracy of the network, it would be necessary

Th1s open access article Is distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) llcense

http //www sei org.br/1Jbe/ do, l 0.18580/setiJbe 2022.4 Web Link http //dx doi.org/10.18580/setiJbe.2022 4

54

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 4, 9p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print)· 2446-9246/ISSN (Online): 2446-9432

to devise a way to send images quickly to the board to verify
the accuracy of the implementation,

REFERENCES

[1] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold,

M. Slaney, R. J. Weiss, and K. W. Wilson, "CNN architectures for
large-scale audio classification," CoRR, vol. abs/1609.09430, 2016.
[Online]. Available: http://arxiv.org/abs/1609.09430

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei­
Fei, "Imagenet large scale visual recognition challenge," International
Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, Dec 2015.
[Online]. Available: https://doi.org/10.1007/sl 1263-015-0816-y

[3] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image
recognition," in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

[4] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, "Efficient processing of
deep neural networks: A tutorial and survey," Proceedings ofthe IEEE,
vol. 105,no. 12,pp. 2295-2329,2017.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification
with deep convolutional neural networks," in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds., vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[6] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, "Xnor-net:
Imagenet classification using binary convolutional neural networks,"
in Computer Vision - ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer Intemational Publishing, 2016, pp.
525-542.

[7] K. Simonyan and A. Zisserman, "Very deep convolutional networks
for large-scale image recognition," in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1409.1556

[8] R. Kellermann, T. Biehle, and L. Fischer, "Drones for pareei and passen­
ger transportation: A literature review," Transportation Research Inter­
disciplinary Perspectives, vol. 4, p. 100088, 2020. [Online]. Available:
https://www .sciencedirect.com/ science/article/pii/S2590198219300879

[9] A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja,
"Deep leaming for object detection and scene perception
in self-driving cars: Survey, challenges, and open issues,"
Array, vol. 10, p. 100057, 2021. [Online]. Available:
https://www .sciencedirect.com/science/article/pii/S2590005 621000059

[10] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and
E. S. Chung, "Accelerating deep convolutional neural networks using
specialized hardware," 2015.

[11] A. Jahanshahi, M. K. Taram, and N. Eskandari, "Blokus duo game
on fpga," in The 17th CSI International Symposium on Computer
Architecture Digital Systems (CADS 2013), 2013, pp. 149-152.

[12] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, "Optimizing
fpga-based accelerator design for deep convolutional neural networks,"
in Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA '15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 161-170.
[Online]. Available: https://doi.org/ l 0.1145/2684746.2689060

[13] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song, Y. Wang, and H. Yang, "Going deeper with embedded
fpga platform for convolutional neural network," in Proceedings of the
2016 ACMISIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA '16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 26-35. [Online]. Available:
https://doi.org/10. l 145/2847263.2847265

[14] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s.
Seo, and Y. Cao, "Throughput-optimized opencl-based fpga accelerator
for large-scale convolutional neural networks," in Proceedings of the
2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA '16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 16-25. [Online]. Available:
https://doi.org/10.l 145/2847263.2847276

[15] S. Liang, C. Liu, Y. Wang, H. Li, and X. Li, "Deepbuming­
gl: An automated framework for generating graph neural network
accelerators," in Proceedings of the 39th International Conference on
Computer-Aided Design, ser. ICCAD '20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3400302.3415645

[16] M. Courbariaux and Y. Bengio, "Binarynet: Training deep
neural networks with weights and activations constrained to + 1
or -1," CoRR, vol. abs/1602.02830, 2016. [Online]. Available:
http://arxiv.org/abs/1602.02830

[17] Artix-7 fpgas data sheet: De and ac switch-
ing characteristics. Accessed: 2022-08-20. [On-
line]. A vailable: xilinx.com/content/dam/xilinx/support/documents/
data sheets/ ds 181 Artix 7 Data Sheet. pdf

[18] I. N.-d. Silva, D. H. Spatti, �d R� A. Flauzino, Redes neurais artificiais
para engenharia e ciências aplicadas . Artliber Editora, 2010.

[19] Y. L. Cun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D.
Jackel, and D. Henderson, Handwritten Digit Recognition with a Back­
Propagation Network. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1990, p. 396-404.

[20] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, Object
Recognition with Gradient-Based Learning. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 319-345. [Online]. Available:
https://doi.org/10.1007 /3-540-46805-6_ 19

[21] "Ackuowledgments," in The Design Warrior's Guide to FPGAs,
C. ldMaxrd Maxfield, Ed. Burlington: Newnes, 2004, pp. xv­
xvi. [Online]. Available: www.sciencedirect.com/science/article/pii/
B9780750676045500015

[22] "Mnist handwritten digit database," http://yann.lecun.com/exdb/mnist/,
accessed: 2022-08-20.

VICTOR M. AGUIRRE received a
B.S. degree in electrical and electronic
engineering in 2021 from Mackenzie
Presbyterian University, São Paulo,
Brazil. His main research interests are
Neural Networks, Field Programmable
Gate Arrays (FPGA), Industrial
Automation, and Programmable Logic
Controllers (PLC) ..

FADI JERJI (S'l8) received a B.S.
degree in computer engineering in
2010 and an M.S. degree in electrical
and computation engineering from
Mackenzie Presbyterian University,
São Paulo, Brazil, in 2019. He is
currently pursuing a Ph.D.degree in
electrical and computation engineering
at Mackenzie Presbyterian University.

Since 2017 he has been a post-grad Researcher with the
Digital TV Research Laboratory at Mackenzie Presbyterian
University.

Th1s open access article Is distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) llcense

http //www sei org.br/1Jbe/ do, l 0.18580/setiJbe 2022.4 Web Link http //dx doi.org/10.18580/setiJbe.2022 4

55

Received in 2022-07-15 I Approved in 2022-08-20

