
Neural Network-Like LDPC Decoder for Mobile

Applications

CITE THIS ARTICLE

Fadi Jerji

Leandro Silva

Cristiano Akamine

Jerji, Fadi; Silva, Leandro; Akamine, Cristiano; 2022. Neural Network-Like LDPC Decoder for Mobile Applications. SET INTERNATIONAL JOURNAL OF
BROADCAST ENGINEERING. ISSN Print: 2446-9246 ISSN Online: 2446-9432. doi: 10.18580/setijbe.2022.1. Web Link: http://dx.doi.org/10.18580/seti­
jbe.2022.1

[P G) �COPYRIGHT This work is made available under the (reative Commons - 4.0 lnternational License. Reproduction in whole or in part
111:P�-l!l-ill!!!!!!!!-is permitted provided the source is acknowledged.

9

Neural Network-Like LDPC Decoder for Mobile

Applications

Fadi Jerji E), Leandro Silva E), and Cristiano Akamine E), Member, SET

Abstract-This paper presents a low complexity iterative de­
coder for Low-Density Parity-Check (LDPC) codes for mobile
applications using a Neural Network-like (NNL) structure and a
modified Single-Layer Perceptron (SLP) training algorithm. The
proposed approach allows for midrange decoding performance
with a minimum gap to Shannon-limit of 3.19 dB at a frame
error rate of 10-4 for the short frame and the code rate 13/15
of the next-generation Digital Terrestrial Television Broadcasting
(DTTB) standard of the Advanced Television Systems Committee
(ATSC), the "ATSC 3.0". The NNL decoder has a low decoding
time, thus, it would be suitable for low power embedded systems,
software-defined radio implementation tools, and software-based
DTTB receptors.

Index Terms-Channel coding, iterative decoding, Low-Density
Parity-Check (LDPC) codes, Neural Networks.

1. INTRODUCTION

S
INCE the introduction of mobile phones in the 70s,

they have become increasingly essential in our everyday

lives, and with the introduction of the smartphone in the late

2000s, it started to replace many <levices by combining their

functionalities in one high-performance piece of hardware [1].

One of the main challenges of our modem smartphones

design process is achieving a trade-off between the demand

for higher processing power and multi-functionality and the

cost, weight, power consumption and battery lifespan [2]. This

only serves to increase the necessity for hardware and software

optimization.

Most modem smartphones incorporate a variety of technolo­

gies to serve different purposes, such as the Wi-Fi, the Long

Term Evolution (LTE) from the Third Generation Partnership

Project (3GPP) and the under-development fifth-generation

wireless technology for digital cellular networks (SG). While

those technologies are vastly different in many aspects, they all

share an important component, the Forward Error Correction

Code (FEC) that is deployed using the Low-Density Parity­

Check (LDPC) codes [3]-[5].

Another example of a technology that uses LDPC codes

and is soon-to-be incorporated in smartphones is the Digital

Terrestrial Television Broadcasting (DTTB) receivers, specif­

ically the next-generation DTTB standard of the Advanced

Television Systems Committee (ATSC), the "ATSC 3.0" [6].

The LDPC codes are chosen in many technologies due to

their near-Shannon-limit performance but their high complex-

This work was supported in part by Coordination for the Improvement of
Higher Education Personnel (CAPES), National Council of Technological and
Scientific Development (CNPq) and MackPesquisa.

Toe authors are with the Postgraduate Program in Electrical and Com­
puter Engineering (PPGEEC), Mackenzie Presbyterian University, São Paulo,
Brazil.

ity decoders force their implementation in a specialized chipset

[7].
Considering that each of those technologies has different re­

quirements for their error correction performance and latency,

severa! dedicated LDPC decoding chipsets have to be included

in the smartphone, which increases energy requirements and

price.

The remaining sections of this paper are organized as

follows: the LDPC codes and the classical LDPC decoding

methods in Section II, an overview of the perceptron, the

Single-Layer Perceptron (SLP) and its training algorithms in

Section III, the proposed Neural Networks-like (NNL) LDPC

decoding method in Section IV, the mathematical complexity

analysis and memory requirements of each of these decoders

in Section V, the detailed results and discussions of the im­

plemented experiments and numerical complexity calculation

for each decoder in Section VI, and the conclusion in Section

VIL

II. LDPC CODES

The LDPC error correction codes were introduced by Gal­

lager in [8]. They are an attractive option for many tech­

nologies due to their near-Shannon-limit performance [7], but

the LDPC code decoders are known for requiring a high

processing power. Therefore, implementing these codes in

software for smartphones requires highly optimized decoding

algorithms, especially for the long codewords required for

high-performance LDPC codes [9].

The LDPC code is represented by the notion (N,K), where

N is the sum of the original information bits number K and

the parity bits number P. The parity bits part P = N - K is

calculated and added to the original information bits, therefore

generating a message that can be transmitted via a noisy

channel.

An example LDPC code (7,4) defined by the matrix H is

shown in (1) where the number of columns represents the total

number of information bits and parity bits while the number

of rows represent the number of parity bits.

The parity check matrix H can be represented by a Tanner

graph representation and shown in Fig. 1 [10], where the

variable nodes Vi, V2 , • • • , Vi are the values representing the

message bits after passing through a noisy channel and the

parity-check nodes C1, C2, C3 are the calculated parity values

used in error check and correction.

1

o

1

o

1

1

1

1

1

1

o

o

(1)

Th1s open occess orticle ,s distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http / /www sei org.br/1Jbe/ do, l 0.18580/set,Jbe 2022. l Web Link http / /dx do1.org/l 0. l 8580/set1Jbe.2022 l

10

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022. Article l. l l p.
2022 SET - Brazil1an Society ofTelev1s1on Eng1neering / ISSN (Print) 2446-9246/ISSN (Online) 2446-9432

Fig. 1: Tanner Graph.

Many LDPC decoding methods were presented in the litera­
ture and generally, they can be divided into two families, high­
complexity high-performance decoders and low-complexity
low-performance decoders.

A. High-complexity high-peiformance decoders

Toe high-complexity high-performance family contains the
sum-product algorithm (SPA), its simplified version the min­
sum algorithm (MSA) and their variant decoding algorithms,
the normalized min-sum algorithm (NMSA), the offset min­
sum algorithm (OMSA) and the variable correction algorithm
(VCMS) [11]-[15].

While the aforementioned decoding methods vary in perfor­
mance and distance from Shannon-limit, they all share a high
complexity [16]. This high complexity, when combined with
a long codeword, makes a software implementation of any of
them impractical, since the latency caused by the decoding
process would cause a reception disturbance and make it
unfeasible [17].

B. Low-complexity Low-peiformance decoders

ln order to provide LDPC decoding methods with lower
decoding complexity, several algorithms were introduced in
the literature, such as the bit-flipping algorithm (BFA) and its
variant the weighted bit-flipping algorithm (WBF) [8], [18],
but their low performance makes them unattractive methods
for industrial implementations.

1) Bit-Flipping decoding algorithm: The BFA algorithm
proposed by Gallager [8] is the simplest LDPC decoder as
it uses binary information and it does not require extensive
calculation. It starts by applying (2) to calculate the parity­
check nodes binary values Cj1 from the binary values of the
variable node V;1 , where i is the index of the variable node
within the array of the variable nodes based on the matrix
H that defines the LDPC code and j is the index of the
check node within the array of the check nodes. Then for
each variable node, the decoder counts the number of the
unsatisfied parity-check nodes that are connected to it as in
(3). Finally, the decoder flips the value of the variable node if
that number was higher than a certain value X as in (4). The
process is repeated until all parity-check nodes are satisfied or
a maximum number of iterations is reached [8].

cj1 = xoRiEC(j) ¼1

FlipV; = L Cj1
jEV(i)

(2)

(3)

if FlipV; < X

if FlipV; � X (4)

Although this method can be easily implemented in soft­
ware, its low error correction performance makes it an
unattractive industrial solution in many cases [8].

2) Weighted Bit-Flipping decoding Algorithm: The WBF is
an altemative LDPC decoding algorithm derived from the BFA
by [18]. The decoding process starts by calculating the values
of the parity-check nodes as it is done in BFA to detect any
errors and terminating the decoding process if all the parity­
check points were satisfied.

Otherwise, the input log likelihood ratio (LLR) the LLRi

are used to initialize the real value representation of each
variable nodes V;r . Then, (5) is applied to find IV;Jminj that
represents the lowest absolute real value among the variable
nodes V; that are connected to the parity-check nodes Cj .
The logical representation of the parity-check nodes Cj1 is
calculated using (6) where V;1 is the logical representation of
the variable nodes V;, i and j are the indexes of the variable
nodes and the check nodes respectively.

Toe real value Eir can be calculated using (7) then the
flipping location can be determined by finding the highest Eir

and flipping the logical value V;1 that correspond to it using
(8).

Toe operation is repeated until all the parity-check nodes
are satisfied or the maximum number of iteration is reached.

IV; lmin
1
· = min IV; 1

r iEC(j) r

Eir = L (2Cj1 - l)IV;Jminj

jEV(i)

if Ei = max Ei
r i=l:N r

otherwise

(5)

(6)

(7)

(8)

Toe WBF can perform better than the BFA in some cases,
but its limitation of flipping only one bit per iteration limits
its practical implementations.

III. THE SINGLE-LAYER PERCEPTRON NEURAL NETWORKS

Toe perceptron was originally proposed by [19] and [20]
as a mathematical representation of the human brain neuron
and its synapses. It was developed to be able to leam the
relation between its inputs x1, x2, ... , Xn and its output y.
According to Fig. 2, the perceptron has a bias of a fixed value
of + 1 that has a connection weight Wb. Also, each input has its
own weight w1, w2, ... , Wn, The weights are initialized with
random values at the beginning of the training and can be
adjusted by the training algorithm.

Combining several perceptrons, an SLP Neural Network
(NN) can be formed as shown in Fig. 3. To train the SLP,
first, the network weights are randomized to break symmetry,
then the training algorithm is applied as a two-step algorithm,
the forward step to calculate the outputs and the second step to
adjust the weights of the network to minimize the total error.
For the forward step, the individual perceptron in the SLP uses

Th1s open occess orticle ,s distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http / /www sei org.br/1Jbe/ do, l 0.18580/set,Jbe 2022. l Web Link http / /dx do1.org/l 0. l 8580/set1Jbe.2022 l

11

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article l, l l p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print). 2446-9246/ISSN (Online): 2446-9432

0---- y

Fig. 2: The perceptron Adaline.

Yl Ym

+1

Fig. 3: Single-layer perceptron Neural Network.

a sum operation to produce its output as in (9), where Xi and
yo1 are the input of the índex i and the calculated output of
the índex j respectively.

n

Yºj = 1 c2:, XiWji + wbj)
i=l

(9)

Toe total error E is calculated using (10) where yo1 and
yd1 are the calculated output and the desired output of the
perceptron of the índex j respectively [21].

(10)

Then, the adjustment to the weight Wji, �Wji, is calculated
by the mean of the partial derivative of the total error with
respect to the weight w1 i using (11)

âE
�Wji = --­

ÔWji
(11)

The final stage of the training iteration (t), is to calculate
the weights for the next iteration w1i(t + 1) applying the
adjustment from the current iteration �Wji(t) to the weights
w1i(t) using the training rate 'T/ as in (12).

(12)

The process is repeated until an acceptable total error or a
maximum number of iterations is reached.

Fig. 4: The proposed XOR perceptron.

IV. THE PROPOSED NEURAL NETWORK-LIKE ALGORITHM

To provide an altemative to dedicated LDPC decoding
chipsets, a configurable software implementation of the LDPC
decoder for the smartphone can be used. By allowing some
degradation in error correction performance, it becomes prac­
tical to create a flexible, cost-effective LDPC decoder with low
power consumption.

Comparing the Tanner graph of Fig. 1 with the SLP structure
in Fig. 3; the similarity can be easily spotted along with
the possibility of applying the SLP NN training algorithm to
decode the LDPC codes, although some modifications to the
SLP and the training algorithm are required to fully match the
Tanner graph.

An early attempt to implement a Multi-layer perceptron
(MLP) decoder was done by [22] and revised by the sarne
authors in [23] and while it provided a proof of concept, it
was not able to deliver a stable and functional decoder for
long code words due to several limitations such as the high
number of multiplications and the overflow of memory register
that resulted from it.

To modify the SLP structure of Fig. 3 to match the Tanner
graph of Fig. 1, the bias weights should be omitted along
with the activation function of each perceptron, in addition
to omitting all the connections that correspond to ZERO
in the matrix H and the Tanner graph. ln addition to the
modifications to the SLP structure, the training algorithm
needs to be modified to adjust the inputs themselves instead
of the weights of their connections.

The perceptron structure is not adequate for the LDPC
decoder requirements since the relation between the Tanner
graph inputs V and the outputs C is a logical XOR. The
SLP training algorithm requires the derivation of the function
XOR, which means that it should have Real numerical values
as inputs and outputs instead of the Boolean XOR.

To solve the aforementioned issues, a new XOR perceptron
is proposed as shown in Fig. 4.

Let real variables V Ar , Br E lR, we define their logical
representation A1, B1 as the following:

{
ONE ifAr <O

Az = LOGICAL(Ar) = ZERO ifAr >O
(13)

Based on (13), the sign of Ar, sgn(Ar), combined with its
absolute value represent its probability. Thus, Ar = O is an
equal probability of A1 being a logical ZERO and a logical
ONE at the sarne time and in this case a small random value
is forced. Therefore, we define:

NOT(Az) = LOGICAL(-Ar)

Th1s open occess orticle ,s distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http / /www sei org.br/1Jbe/ do, l 0.18580/set,Jbe 2022. l Web Link http / /dx do1.org/l 0. l 8580/set1Jbe.2022 l

12

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article l, l l p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print). 2446-9246/ISSN (Online): 2446-9432

and
Az XOR Bz = LOGICAL(Ar x Br) (14)

As per the Tanner graph representation of the LDPC code,
each check node C1 that is connected to the variable nodes
V1, Vi, ... , Vn has a real value C1r and a logical representation
C11 and each variable node has a real value ½r and a logical
representation ½

1
• The value of C11 is calculated as in (15).

c]l
= V11 XOR Vil XOR ... XOR Vnl (15)

From (14) and (15)

n

ln order to avoid a variable overflow due to the limitation of
real numbers microprocessors representation such as float and
double float we calculate C1r as shown by Fig. 4 and (16):

n

c]r = II Tanh(½J

As for V Vir E � then
i=l

-1 < Tanh(½J < 1

and
n

-1 < II Tanh(½r) < 1
i=l

(16)

thus, the aforementioned limitation for the algorithm imple­
mentation is removed.
For the LDPC code (N,K), (16) becomes (17)

c]r = II Tanh(½r)
iEG(j)

(17)

By modifying the SLP training algorithm for the new XOR
perceptron-Tanner graph structure, we obtain (18),

(18)

where E is the total error and e1 is the error for the check
node C1 and is calculated using (19),

(19)

where Z is the desired output value and is a positive real
number in the range (O.O - 1.0) representing a logical ZERO,
Then the partia! derivative of the total error with respect to
each variable node is calculated using (20),

where

oE�v; =--ir o½r

=
- " (oE

X

Oej
X

ac]r)L..,, oe . ac. av;
jEV(i) J Jr ir

oE --e­
oe · - J

J

(20)

and

and

oe1 = _ 1ac-Jr

ac]r = [II Tanh(½,
r
)][Tanh'(½r)lav; ir i'EG(j)\i

Toe last step of the iteration would be the application of
the correction to ½ using (21)

(21)

where t, ½) t) and � ½) t) are the current iteration, the
value of ½r during the current iteration and the calculated
value of � ½r in the current iteration respectively and where
t + 1 and Vir (t + 1) are the next iteration and the value
of Vir during the next iteration respectively and rJ is a real
number that represents the correction rate. This experimental
study demonstrated that the proposed decoder has its best
performance when 'T/ satisfied the condition O < 'T/ < 2.

lt is important to mention that to keep the Tanh functions
in (16) functioning in the linear area of the Tanh curve, the
input variables ½r need to be normalized to match that area.
Since the data is normalized, the NNL decoder is not sensitive
to channel estimation error.

V. COMPLEXITY ANALYSIS AND MEMORY REQUIREMENTS

To compare the complexity of the proposed NNL decoder
with the low-complexity decoders, the BFA and the WBF, we
calculate the number of microprocessor cycles needed for each
step of each decoder and its memory footprint.

A. Complexity analysis

Let Ia, Im, Ic, Ix , In, It, Is and Iabs be the number
of microprocessor cycles needed for addition, multiplication,
comparison, logical XOR operation, logical NOT operation,
hyperbolic tangent, signal extraction operation and absolute,
respectively, nI be the total number of microprocessor cycles
needed for the current step of the decoding iteration.

For the LDPC code (N ,K) where O is the number of nonzero
elements of the sparse matrix H of N colurnns and P rows,
the value of O is equal to the total number of connections
in the corresponding Tanner graph. The value Nerrors is the
number of erroneous bits,

For the sarne LDPC code (N,K), n ½ and nC1 are the
number of the check nodes connected to the variable node
½ and the number of variable nodes connected to the check
node C j respectively.

1) BFA complexity: To calculate the complexity of BFA, we
start by calculating the complexity of (2) that is represented
by (22).

p

nI= LnC1 X Ix

j=l

= O X Ix

Toe complexity of (3) is represented by (23).

(22)

Th1s open occess orticle ,s distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http / /www sei org.br/1Jbe/ do, l 0.18580/set,Jbe 2022. l Web Link http / /dx do1.org/l 0. l 8580/set1Jbe.2022 l

13

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article l, l l p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print). 2446-9246/ISSN (Online): 2446-9432

N

nI= Ln¼ X Ia
i=l

= O X Ia

The complexity of (4) is represented by (24).

N

nI = L Ic + Nerrors X In
i=l

= N X Ic + Nerrors X In

as O � Nerrors � N then

(23)

(24)

2) WBF complexity: To calculate the complexity of WBF,
it is necessary to calculate the complexity of each step of its
iteration. The complexity of (5) is represented by (25).

p

nI= LnCj X (Ic+Iabs)
j=l

= O X (Ic + Iabs)

The complexity of (6) is represented by (26).

p

nI= 2:ncj X Ix

j=l

= O X Ix

The complexity of (7) is represented by (27).

N

nI = Ln¼ X (2 X Im + Ia)
i=l

The complexity of (8) is represented by (28).

nI = N X Ix +In

(25)

(26)

(27)

(28)

3) NNL complexity: The complexity of the proposed NNL
decoder is provided by the sum of the complexity of all its
steps, starting with the calculation of the complexity of (17)
that is represented by (29).

p

nI = L[nCj x (Im + It)]
j=l

Ignoring the repetitive calculations of Tanh(¼J
p

= Im X L nCj + N X It
j=l

= O X Im +N X It

The complexity of (18) is represented by (30).

The complexity of (20) is represented by (31).

(29)

(30)

N

nI = L{Ia + L [Ia+ (nCj -1) X (Im +It)
i=l jEV(i)

+ 2 X Ia + 3 X Im + It]}
=(N + 3 X O) X Ia+ O X (3 X Im + It)

p

+ (Im + It)(-O + L nCJ)
j=l

(31)

However, since Tanh(¼J was pre-computed in (16), (31)
becomes (32):

p

= (N + 3 X O) X Ia+ Im X (2 X O+ L nCJ) (32)
j=l

The complexity of (21) is represented by (33)

(33)

B. Memory requirements

As all methods require storing both V and C matrices that
have the sizes N x 1 and P x 1 respectively, then we analyze
the memory space that is required by each method in addition
to the basic N + P locations. We ignore single variables as
they require a negligible memory space in comparison to the
matrices used in the decoding methods.

To calculate the number of memory accesses per iteration
for each decoding method, it is necessary to calculate the
number of memory accesses for each step represented by nM a
where Ma is the memory access per variable.

1) BFA memory requirements: The BFA requires storing
the matrix Flip¼ with the size N x 1. Thus, the total memory
requirement is: 2 x N + P.

The memory access of (2) is represented by (34).
p p

nMa = 2:Ma+ 2:ncj X Ma
j=l j=l

= (P+O) x Ma

The memory access of (3) is represented by (35).
N N

nMa= LMa+ Ln¼ x Ma
i=l i=l

= (N + O) x Ma

The memory access of (4) is represented by (36).
N

nMa= L2 xMa
j=l

= 2 x N x Ma

(34)

(35)

(36)

2) WBF memory requirements: The WBF requires storing
the matrices l¼r lminj and cj1

with the size p X 1 each. Thus,
the total memory requirement is: N + 3 x P.

The memory access of (5) is represented by (37).
p p

nM a= L Ma+ L nCj x Ma
j=l j=l

= (P+O) x Ma

(37)

Th1s open occess orticle ,s distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http / /www sei org.br/1Jbe/ do, l 0.18580/set,Jbe 2022. l Web Link http / /dx do1.org/l 0. l 8580/set1Jbe.2022 l

14

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article l, l l p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print). 2446-9246/ISSN (Online): 2446-9432

Toe memory access of (6) is represented by (38).

p p

nMa = LMa+ LnC1 x 2 x Ma
j=l j=l

= (P + 2 x O) x Ma

Toe memory access of (7) is represented by (39).

N N

nMa= LMa+ Ln¼ x (2 x Ma)
i=l i=l

= (N + 2 x O) x Ma

Toe memory access of (8) is represented by (40).

nMa=NxMa

(38)

(39)

(40)

3) NNL memory requirements: The NNL method requires
storing the matrix Tanh(¼J with the size N x 1, and the
storage of the matrix � ¼

r
can be omitted since only the

current � ¼
r

is needed, and it does not need to be stored
between iterations. Thus, the total memory requirement is:
2 x N +P.

Toe memory access of (17) is represented by (41).

p p

nMa = LMa+ L[nC1 x Ma]
j=l j=l

= (P+O) x Ma

Toe memory access of (18) is represented by (42).

p

nMa= LMa+l
j=l

=Px (Ma+l)

Toe memory access of (20) is represented by (43).

N N

nM a = L Ma+ L L (nC1 + 1) x Ma
i=l i=l jEV(i)

p

(41)

(42)

= N x Ma+O x Ma+Ma x LnCJ (43)

p

= (N +o+ LnC;) X Ma
j=l

j=l

Toe memory access of (21) is represented by (44)

N N

nMa = LMa+ L(2 x Ma)
i=l i=l

= 3 x N x Ma

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

(44)

To numerically compare the proposed NNL decoder with
the classical LDPC decoders, both a performance simulation
and a complexity calculation are necessary.

A group of LDPC codes was selected for comparative
analysis. ln this paper, a case study was done using the ATSC
3.0 LDPC codes.

A. Case study: ATSC 3.0 LDPC Codes
Toe ATSC 3.0 has been under development as the next­

generation DTTB standard by the ATSC since early 2013
[24], [25]. The ATSC 3.0 offers higher data rates, allowing
higher image quality and higher robustness in comparison to
the earlier ATSC 1.0 A/53 standard that was developed over
a decade earlier [26].

ln order for the new ATSC 3.0 standard to ensure higher
robustness than its predecessors, severa! new techniques
were adopted, such as the Bit-interleaved Coded Modulation
(BICM) [27]. The BICM deploys two concatenated FEC layers
with an inner LDPC code and an outer Bose-Chaudhuri­
Hocquenghem (BCH) code [28]. The outer code can be
replaced with a Cyclic Redundancy Check (CRC) or it can
be omitted.

Toe ATSC 3.0 standard uses a systematic LDPC coding
with two different values for its frame size N, a normal frame
of 64800 bits and a short frame of 16200 bits, given that the
normal frame provides a better error correction performance
and the short frame a lower latency for latency-sensitive
applications [29]. Ten different Code Rates (CR) from (2/15)
up to (13/15) for each frame size cause a variance in the length
of information part K of the LDPC message.

ln order for the new ATSC 3.0 standard to achieve high ro­
bustness, two different LDPC structures are used, the irregular
repeat accumulate (IRA) structure that has a high performance
in medium and high CR but with the disadvantage of low
performance in low CR [25], [30]. Therefore, the multi-edge
type (MET) structure is used for low CR [6].

B. Pe,formance simulation
To provide a comparative analysis, the proposed NNL

was implemented and tested over an additive white Gaussian
noise (A WGN) channel using quadrature phase-shift keying
(QPSK) modulation [31]. Each message was decoded using a
maximum of 50 iterations. An extensive computer simulation
was executed to obtain the signal to noise ratio per symbol
(E8 /N0) that corresponded to the threshold of 10-4 frame
error rate (FER) since it is always assumed that the outer
coding is set to BCH. A performance of 10-4 FER by the
LDPC inner code will guarantee an overall performance of
10-5 FER after applying the outer code, which is sufficient
for terrestrial broadcasting services [16].

Toe value rJ was chosen to be equal to 1.0 for all code
lengths and CR. For code length of 64800 and CR of (2/15
- 6/15), the normalization range and the value Z were chosen
to be equal to (-2.0 - 2.0) and 0.60 respectively, and for the
CR of (7/15 - 13/15) the respective equal values chosen were
(-4.0 - 4.0) and 0.99. For code length of 16200 and CR of
(2/15 - 4/15) and (6/15 - 8/15) the normalization range and
the value Z were chosen to be equals to (-2.0 - 2.0) and 0.60
respectively, and for the CR of (5/15 and 9/15 - 13/15) the
respective equal values chosen were (-4.0 - 4.0) and 0.99.

Fig. 5 demonstrates the performance of various ATSC 3.0
LDPC decoders with a code length of 16200 and CR of 13/15.
ln this case, the simulation was run until the total number of
frames are processed regardless of the FER value, therefore

Th1s open occess orticle ,s distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http / /www sei org.br/1Jbe/ do, l 0.18580/set,Jbe 2022. l Web Link http / /dx do1.org/l 0. l 8580/set1Jbe.2022 l

15

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article l, l l p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print). 2446-9246/ISSN (Online): 2446-9432

o
.-<
01

.2 10·2
a::.
LJ.J
LJ..

----€---BFA

------A-----WBF

______,.__NNL

--Shannon limit

4 6 8

Es/No (dB)

10 12

Fig. 5: ATSC 3.0 LDPC codes performance using various
decoders (code length = 16200, CR = 13/15).

TABLE I: Performance comparison for ATSC 3.0 LDPC
decoders (code length = 64800) (QPSK)

CR

2/15
3/15
4/15
5/15
6/15
7/15
8/15
9/15
10/15
11/15
12/15
13/15

Structure

MET
MET
MET
MET
IRA
MET
IRA
IRA
IRA
IRA
IRA
IRA

Shannon lirnit
(Es/No ,dB)

-6.92
-4.94
-3.47
-2.26
-1.21
-0.26
0.62
1.47
2.31
3.17
4.08
5.13

Required Es/Na for FER=l0-4 (dB)
NNL
3.81
4.90
6.02
6.70
7.01
8.09
7.95
8.15
8.11
8.14
8.27
8.51

WBF [32]
10.32
10.32
10.34
10.36
10.50
10.40
10.47
10.44
10.49
10.50
11.00
10.91

BFA [32]
6.80
7.90
8.41
9.31
10.11
10.30
10.40
10.37
10.50
10.74
11.56
12.00

TABLE II: Performance comparison for ATSC 3.0 LDPC
decoders (code length = 16200) (QPSK)

Shannon lirnit Required Es/Na for FER=l0-4 (dB)
CR Structure (Es/Na ,dB) NNL WBF [32] BFA [32]
2/15 MET -6.92 4.04 9.21 8.70
3/15 MET -4.94 4.90 9.13 8.16
4/15 MET -3.47 6.32 9.20 9.03
5/15 MET -2.26 6.50 9.17 9.10
6/15 IRA -1.21 6.42 9.50 9.91
7/15 IRA -0.26 7.00 10.00 9.70
8/15 IRA 0.62 6.94 10.00 10.00
9/15 IRA 1.47 7.31 9.71 10.02
10/15 IRA 2.31 7.37 10.00 10.30
11/15 IRA 3.17 7.60 10.20 10.52
12/15 IRA 4.08 7.90 10.23 10.93
13/15 IRA 5.13 8.32 10.52 11.90

it can be verified that the proposed NNL decoder does not
present an error floor.

Toe experimental results for each coding rate are presented
in Tables I and II where the NNL superior performance to
both the WBF and the BFA decoding algorithm can be seen
in all code rates and code lengths.

It can be seen that the limitation of the WBF of only
correcting one error per iteration is clear in the results as the
WBF decoder does not have a decoding performance that can

achieve BER of 10-4 for a value of E8 /N0 < 9.13 dB for
any of the code rates.

Toe BFA decoding algorithrn limitation due to its depen­
dency on binary LLRi values is shown in the results as well,
especially at high code rates.

Toe proposed NNL decoding algorithm demonstrated a mid­
range decoding performance getting closer to the theoretical
limit in higher code rates .

C, Complexity calculation

As the hyperbolic tangent function requires one exponential
function to be calculated in approximately 60 microprocessor
clock cycles, while the inverse hyperbolic tangent function
requires one logarithmic function thus approximately 52 pro­
cessor clock cycles; most decoders use a work-around for this
issue by tabling the hyperbolic tangent function to reduce the
required cycles [33]. Most modem microprocessors utilize a
hardware float point unit (FPU) that is capable of executing
addition and multiplication in one to two cycles in addition
to the logical and comparison functions in a single cycle
[34]. Therefore, we can approximately calculate the number
of cycles required to decode an ATSC 3.0 LDPC message of
different CR using different decoders.

Considering that all the mathematical and logical operations
mentioned in Section V would be executed in one processor's
cycle except for the multiplication Im that needs two cycles
and the hyperbolic tangent It that requires 60 cycles, it
is possible to calculate the number of cycles per iteration
for each decoder by applying the aforementioned values in
the complexity equations demonstrated in Section V. Toe
implementation overhead caused by the various loops required
to execute each step of the decoding process is estimated by
counting the required operations and the number of memory
accesses.

TABLE III: ATSC 3.0 LDPC decoders number of
instructions and memory accesses (code length = 64800)

CR
NNL (x106) WBF (x106) BFA (x106)
nl nMa nl nMa nI nMa

2/15 5.62 2.37 2.10 1.51 0.61 0.76
3/15 6.99 3.01 2.22 1.58 0.64 0.79
4/15 8.58 3.79 2.30 1.62 0.66 0.80
5/15 11.91 5.41 2.41 1.68 0.68 0.83
6/15 7.04 3.01 2.32 1.61 0.66 0.80
7/15 22.03 10.43 2.55 1.75 0.72 0.85
8/15 8.34 3.65 2.35 1.62 0.67 0.79
9/15 9.18 4.07 2.34 1.61 0.67 0.79
10/15 10.18 4.58 2.31 1.58 0.66 0.78
11/15 11.85 5.42 2.30 1.56 0.66 0.77
12/15 15.35 7.16 2.34 1.58 0.67 0.78
13/15 20.93 9.96 2.30 1.55 0.66 0.76

It can be noted that as the complexity of BFA changes based
on the number of the erroneous bit, as demonstrated in (24),
the presented BFA complexity calculation is done with the
assumption that half of the received bits are erroneous and
thus provides an average decoding time.

Tables III and IV demonstrate the complexity values cal­
culated using the method described in Section V represented
by the total number of instructions and the total number of

Th1s open occess orticle ,s distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http / /www sei org.br/1Jbe/ do, l 0.18580/set,Jbe 2022. l Web Link http / /dx do1.org/l 0. l 8580/set1Jbe.2022 l

16

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article l, l l p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print). 2446-9246/ISSN (Online): 2446-9432

TABLE IV: ATSC 3.0 LDPC decoders number of
instructions and memory accesses (code length = 16200)

CR
NNL (x106) WBF (x106) BFA (x106)
nI nMa nI nMa nl nMa

2/15 0.83 0.35 0.38 0.29 0.12 0.15

3/15 1.32 0.56 0.50 0.36 0.15 0.18

4/15 1.45 0.63 0.50 0.36 0.14 0.18

5/15 2.11 0.93 0.57 0.40 0.16 0.20

6/15 1.81 0.77 0.59 0.41 0.17 0.20

7/15 1.98 0.86 0.60 0.41 0.17 0.20

8/15 2.27 1.00 0.62 0.42 0.17 0.21

9/15 2.13 0.94 0.56 0.38 0.16 0.19

10/15 2.86 1.29 0.62 0.42 0.17 0.20

11/15 2.76 1.26 0.55 0.38 0.16 0.19

12/15 3.72 1.73 0.57 0.39 0.16 0.19

13/15 5.47 2.60 0.59 0.39 0.17 0.19

memory accesses required in a single decoding iteration of
the BFA, WBF and the proposed NNL decoding algorithms
for the ATSC 3.0 codes.

By analyzing the values in Tables III and IV, one can
assume that the NNL decoder decoding time would be higher
than the WBF decoding time, but this assumption would not be
accurate even when considering the additional implementation
overhead [17]. Such an assumption would be discarding two
important factors, the first is the cache memory available in
all practical processors that, combined with the small memory
footprint of the three decoders, eliminates the need for a high
number of memory accesses by storing the C and V matrices
of the size P and N respectively in the cache memory thus
speeding up the over-all processing [35].

Toe second factor is that the instructions are not necessarily
executed sequentially and that currently used processors de­
ploy the superscalar pipelining that allows for the execution
speedup by benefiting from the intrinsic parallelism of the
algorithm, therefore executing multiple instructions at the
sarne time, nevertheless, any dependency in the code can limit
the superscalar, especially conditional operations [36].

Toe proposed NNL decoding algorithm was designed with
superscalar in mind by eliminating of conditional operations
to avoid any branch penalties and allow for a considerable
performance enhancement while the WBF and the BFA still
require a high number of conditional operations relative to the
total number of operations, in both cases the benefit of the
superscalar pipelining is limited.

Toe result of both cache memory speedup and the super­
scalar pipelining speedup is clear in the complexity of an
implementation of the three decoding methods with a clear
additional speedup in the case of the proposed NNL decoder.

To calculate the decoding time for each of the decoders
three states of the art mobile phones were selected, the iPhone
Xs from Apple, the Galaxy S 10 from Samsung and the Pixel
3XL from Google. Toe cycle time and memory access time
is calculated based on the mobile phone specification and the
values are used to calculate the decoding time for the decoders.

Although the mobile phone companies don't usually an­
nounce the specification of the processor and the memory
used in their products, those specifications have been identified
by tech enthusiasts. Toe iPhone XS deploys an A12 Bionic

2.49 GHz processor and a 64-bit single-channel 2133 MHz
LPDDR4X memory while the Samsung Galaxy SlO uses a
Samsung Exynos 9820 2.7 GHz processor and a Samsung
K3UH7H70AM-AGCL 2133 MHz memory. The Google Pixel
3XL uses a Qualcomm Kryo 385 2.8 GHz processor and an
MT53D512M64D4RQ-053_ WT_E LPDDR4 1866MHz mem­
ory [37]-[39].

Toe values of the decoding throughput in kbps, for 50
interactions and after removing the parity bits, for the LDPC
decoders are shown in Tables V and VI.

These results confirm the additional speedup that the pro­
posed NNL decoding method gained from the superscalar
pipelining in addition to the cache memory speedup that all
three decoders gained.

Toe results for decoders throughput in kbps, for 50 inter­
actions and after removing the parity bits, on the Samsung
Galaxy S 10 are shown in Fig. 6 and 7. ln addition, Fig 8 and
9 demonstrate the decoders' throughput in kbps in relation
to their decoding performance represented by the required
E8 /N0 for FER=l0-4, these figures demonstrate that even
in the cases where a low code-rate BFA decoder would have
a better performance than a high code-rate NNL decoder, the
NNL decoder would still provide higher throughput.

Only when the Es /N0 is around 10 (dB), does the BFA
start being more advantageous when the QPSK modulation is
used, but in this case, the proposed NNL decoder might not
require all 50 iterations to correct the channel-induced errors
and its throughput would be higher as well. This would be a
dynamic throughput value that would change according to the
number of required decoding iterations.

VII. CONCLUSION

ln this paper, we proposed an NNL low complexity LDPC
decoder derived from NN and SLP training algorithrn and
supported with mathematical proof and computer simulation
results. We demonstrated the difference in the computa­
tional complexity and memory requirements for the proposed
midrange NNL, BFA, WBF decoders.

Toe experimental results showed that the proposed NNL
outperformed both the BFA and the WBF algorithms in all
of the tested code rates and code lengths of the ATSC 3.0
LDPC. ln addition, the mathematical calculation along with
the experimental results highlighted the speedup that the NNL
decoder benefited from due to superscalar and cache memory.

Toe proposed NNL decoder demonstrates a low complexity
and a mid-range performance; since its error correction per­
formance is superior to the BFA and WBF while having a
memory requirement and a complexity that is lower than the
WBF and, in some cases, the BFA decoder. These characters
makes it a very suitable decoder for software implementations
for mobile applications, low-cost DTTB receivers and embed­
ded systems.

ACKNOWLEDGMENT

Toe authors would like to thank their colleagues at the
Postgraduate Program in Electrical Engineering and Comput­
ing Department and the Digital TV Research Laboratory at
Mackenzie Presbyterian University.

Th1s open occess orticle ,s distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) llcense

http / /www sei org.br/1Jbe/ do, l 0.18580/set,Jbe 2022. l Web Link http / /dx do1.org/l 0. l 8580/set1Jbe.2022 l

17

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article l, l l p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print). 2446-9246/ISSN (Online): 2446-9432

1000 1000

-+-NNL -+-NNL

900 ------&-WBF 900 ------&-WBF

--e- B F A --8--BFA

800 800

700 700

-;;;- -;;;-
600 Q. 600 Q.

.e .e
::.

500
::.

500

.el .el
"' "'

a:: 400 a:: 400
....,,
ai

300
ai

300

200 200

100 100

o o

2/15 3/15 4/15 5/15 6/15 7/15 8/15 9/1510/1511/151.2/1513/15 2/15 3115 4/15 5/15 6/15 7115 8/15 9/1510/1511/151.2/1513/15

Code Rate Code Rate

Fig. 6: ATSC 3.0 LDPC decoders throughput in kbps on Fig. 7: ATSC 3.0 LDPC decoders throughput in kbps on

Samsung Galaxy S 10, (code length = 64800). Samsung Galaxy S 10, (code length = 16200).

TABLE V: ATSC 3.0 LDPC decoders throughput in kbps TABLE VI: ATSC 3.0 LDPC decoders throughput in kbps
(code length = 64800). (code length = 16200).

CR Device NNL WBF BFA
CR Device NNL WBF BFA

iPhone XS 58.8 40.5 62.5 iPhone XS 114.0 114.0 183.4
2/15 Galaxy SlO 63.4 43.7 67.2 2/15 Galaxy SlO 124.1 124.1 200.9

Pixel 3XL 64.9 44.6 69.2 Pixel 3XL 125.3 123.8 200.0
iPhone XS 75.3 48.8 74.9 iPhone XS 113.0 89.1 140.6

3/15 Galaxy SlO 81.1 52.6 80.9 3/15 Galaxy SlO 121.7 95.9 150.7
Pixel 3XL 83.3 54.0 83.0 Pixel 3XL 124.6 979 153.4
iPhone XS 90.2 56.3 86.1 iPhone XS 143.0 106.8 165.4

4/15 Galaxy SlO 97.5 60.8 93.2 4/15 Galaxy SlO 153.4 115.6 179.5
Pixel 3XL 100.1 62.5 95.9 Pixel 3XL 157.2 117.9 183.6
iPhone XS 91.3 53.3 81.1 iPhone XS 135.2 90.9 138.8

5/15 Galaxy SlO 98.6 57.6 87.7 5/15 Galaxy SlO 146.5 97.7 150.7
Pixel 3XL 101.4 59.3 90.5 Pixel 3XL 149.4 100.2 154.6
iPhone XS 254.4 243.4 386.5 iPhone XS 253.1 243.4 383.5

6/15 Galaxy SlO 273.6 261.0 415.0 6/15 Galaxy SlO 269.3 258.3 408.3
Pixel 3XL 278.2 262.3 421.9 Pixel 3XL 275.4 260.6 417.2
iPhone XS 97.0 53.1 80.4 iPhone XS 289.5 278.6 447.4

7/15 Galaxy SlO 104.9 57.4 87.0 7/15 Galaxy SlO 314.2 301.3 476.3
Pixel 3XL 108.0 59.2 89.9 Pixel 3XL 319.7 302.4 483.0
iPhone XS 340.9 327.7 519.2 iPhone XS 330.9 318.4 511.4

8/15 Galaxy SlO 366.8 351.6 557.9 8/15 Galaxy SlO 351.6 344.4 544.4
Pixel 3XL 372.9 353.4 562.5 Pixel 3XL 361.4 345.1 540.9
iPhone XS 391.4 379.7 597.9 iPhone XS 387.4 358.2 558.4

9/15 Galaxy SlO 419.5 406.1 643.5 9/15 Galaxy SlO 412.7 379.7 593.3
Pixel 3XL 426.6 410.5 654.6 Pixel 3XL 424.1 386.4 612.5
iPhone XS 434.9 413.6 649.0 iPhone XS 413.6 398.0 639.2

10/15 Galaxy SlO 466.2 441.8 697.3 10/15 Galaxy SlO 448.8 430.5 680.4
Pixel 3XL 474.0 446.4 709.0 Pixel 3XL 455.3 432.7 687.3
iPhone XS 483.4 461.8 725.1 iPhone XS 504.4 483.4 773.4

11/15 Galaxy SlO 521.4 496.3 779.9 11/15 Galaxy SlO 539.6 515.6 828.7
Pixel 3XL 530.4 501.7 793.3 Pixel 3XL 551.0 524.9 831.8
iPhone XS 527.3 508.8 797.2 iPhone XS 538.6 516.6 791.0

12/15 Galaxy SlO 568.8 544.4 858.1 12/15 Galaxy SlO 575.3 550.3 872.8
Pixel 3XL 578.6 550.3 872.8 Pixel 3XL 584.2 554.7 876.5
iPhone XS 580.4 556.8 870.5 iPhone XS 571.3 537.7 856.9

13/15 Galaxy SlO 623.2 596.1 929.6 13/15 Galaxy SlO 623.2 583.4 914.1
Pixel 3XL 634.0 602.7 945.6 Pixel 3XL 633.3 587.5 924.7

REFERENCES
Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1-5,

[1] I. Lin, B. Jeff, and I. Rickard, "Arm platform for performance and power April 2016.
efficiency - hardware and software perspectives," in 2016 Intemational [2] J. Cho, Y. Woo, S. Kim, and E. Seo, "A battery lifetime guarantee

Th1s open occess orticle ,s distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http / /www sei org.br/1Jbe/ do, l 0.18580/set,Jbe 2022. l Web Link http / /dx do1.org/l 0. l 8580/set1Jbe.2022 l

18

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article l, l l p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print). 2446-9246/ISSN (Online): 2446-9432

1000

900

800

700
"' o. 600
.e

500

� 400

ai 300

200

100

o

o

>< NNL
6 WBF
O BFA

2

)<
)<

4

)<

X

X

X

6 8
Es/N0 (dB)

o

o

o

6
O 6
6
6

◊L:,

6

6

10

o

o

12 14

Fig. 8: ATSC 3.0 LDPC decoders throughput in kbps on
Samsung Galaxy S 10 in relation to their decoding
performance, the required Es/N0 for FER=l0-4 (dB), (code
length = 64800).

1000
X NNL

o 900 6 WBF o
o

800
BFA o

700
o

"' 600)<
Q.

X
◊ L:, .e
� -"')<

500
)<

o

"'
X i cr: 400

....,)< 6

ai 300)< 6
)< 6

200 ◊ºiX X
\,(

100

o

o 2 4 6 8 10 12 14
Es/N0 (dB)

Fig. 9: ATSC 3.0 LDPC decoders throughput in kbps on
Samsung Galaxy S 10 in relation to their decoding
performance, the required Es/N0 for FER=l0-4 (dB), (code
length = 16200).

scheme for selective applications in smart mobile devices," IEEE Trans­
actions on Consumer Electronics, vol. 60, no. 1, pp. 155-163, 2014.

[3] IEEE-Std, "Ieee standard for information technology- local and
metropolitan area networks- part 11, amendment 5," IEEE Std 802.lln-
2009, pp. 1-565, Oct 2009.

[4] T. Richardson and S. Kudekar, "Design of low-density parity check
codes for 5g new radio," IEEE Communications Magazine, vol. 56,
pp. 28-34, MARCH 2018.

[5] G. Indumathi and D. A. Joe, "Design of optimum physical layer archi­
tecture for a high data rate !te uplink transceiver," in 2013 International
Conference on Green High Performance Computing (ICGHPC), pp. 1-8,
March 2013.

[6] K. Kim, S. Myung, S. Park, J. Lee, M. Kan, Y. Shinohara, J. Shin,
and J. Kim, "Low-density parity-check codes for atsc 3.0," IEEE
Transactions on Broadcasting, vol. 62, pp. 189-196, March 2016.

[7] D. J. C. MacKay and R. M. Neal, "Near shannon limit performance of
low density parity check codes," Electronics Letters, vol. 33, pp. 457-
458, Mar 1997.

[8] R. Gallager, "Low-density parity-check codes;' IRE Transactions on

Information Theory, vol. 8, pp. 21-28, Jan 1962.
[9] D. J. C. MacKay, "Good error-correcting codes based on very sparse

matrices," IEEE Transactions on Information Theory, vol. 45, pp. 399-
431, Mar 1999.

[10] R. Tanner, "A recursive approach to low complexity codes," IEEE
Transactions on Information Theory, vol. 27, pp. 533-547, Sep 1981.

[11] F. R. Kschischang, B. J. Frey, and H . . Loeliger, "Factor graphs and
the sum-product algorithm," IEEE Transactions on Information Theory,
vol. 47, pp. 498-519, Feb 2001.

[12] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, "Reduced complexity
iterative decoding of low-density parity check codes based on belief
propagation," IEEE Transactions on Communications, vol. 47, pp. 673-
680, May 1999.

[13] J. Chen and M. P. C. Fossorier, "Near optimum universal belief
propagation based decoding of low-density parity check codes," IEEE
Transactions on Communications, vol. 50, pp. 406---414, March 2002.

[14] J. Chen and M. P. C. Fossorier, "Density evolution for two improved
bp-based decoding algorithms of ldpc codes," IEEE Communications
Letters, vol. 6, pp. 208-210, May 2002.

[15] C. Chen, Y. Xu, H. Ju, D. He, W. Zhang, and Y. Zhang, "Variable
correction for min-sum ldpc decoding applied in atsc3.0," in 20I8
IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB), pp. 1-5, June 2018.

[16] S. Myung, S. Park, K. Kim, J. Lee, S. Kwon, and J. Kim, "Offset
and normalized min-sum algorithms for atsc 3.0 ldpc decoder," IEEE
Transactions on Broadcasting, vol. 63, pp. 734-739, Dec 2017.

[17] F. Jerji and C. Akamine, ''Advanced isdb-t and atsc 3.0 ldpc codes
performance and complexity comparison," IEEE Transactions on Broad­
casting, vol. 68, no. 1, pp. 254--262, 2022.

[18] Y. Kou, S. Lin, and M. P. C. Fossorier, "Low-density parity-check
codes based on finite geometries: a rediscovery and new results," IEEE
Transactions on Information Theory, vol. 47, pp. 2711-2736, Nov 2001.

[19] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton
Project Para. Cornell Aeronautical Laboratory, 1957.

[20] B. Widrow and M. E. Hoff, "Adaptive switching circuits," Jun 1960.
[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning represen­

tations by back-propagating errors," Nature, vol. 323, pp. 533-536, Oct
1986.

[22] A. R. Kararni, M. A. Attari, and H. Tavakoli, "Multi layer perceptron
neural networks decoder for ldpc codes," in 2009 5th International
Conference on Wireless Communications, Networking and Mobile Com­
puting, pp. 1-4, Sept 2009.

[23] A. Kararni and M. A. Attari, "Novel ldpc decoder via mlp neural
networks," 2014.

[24] L. Fay, L. Michael, D. Gómez-Barquero, N. Ammar, and M. W.
Caldwell, "An overview of the atsc 3.0 physical layer specification,"
IEEE Transactions on Broadcasting, vol. 62, pp. 159-171, March 2016.

[25] ATSC, "Physical Layer Protocol Standard, Af322:2017," standard, The
Advanced Television Systems Committee, USA, June 2017.

[26] ATSC, "ATSC Digital Television Standard, Af53, Part 1:2007," standard,
The Advanced Television Systems Committee, USA, Jan. 2007.

[27] L. Michael and D. Gómez-Barquero, "Bit-interleaved coded modulation
(bicm) for atsc 3.0," IEEE Transactions on Broadcasting, vol. 62,
pp. 181-188, March 2016.

[28] R. Bose and D. R. Chaudhuri, "On a class of error correcting binary
group codes," Information and Contrai, vol. 3, no. 1, pp. 68 - 79, 1960.

[29] L. Michael and D. Gómez-Barquero, "Modulation and coding for atsc
3.0," in 2015 IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting, pp. 1-5, June 2015.

[30] DVB, "Part 1: DVB-S2, ETSI EN 302 307-1 Vl.4.1," standard, Digital
Vídeo Broadcasting, FRANCE, Nov. 2014.

[31] A. Ghazel, E. Boutillon, J . . Danger, G. Gulak, and H. Laamari, "Design
and performance analysis of a high speed awgn communication channel
emulator," in 2001 IEEE Paci.fic Rim Conference on Communications,
Computers and Signal Processing (IEEE Cat. No.01CH37233), vol. 2,
pp. 374-377 vol.2, Aug 2001.

[32] F. Jerji and C. Akarnine, "Gradient bit-flipping ldpc decoder for atsc
3.0," in 2019 IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting (BMSB), pp. 1-4, Jun 2019.

[33] J. Harrison, T. Kubaska, S. Story, M. S. Labs, and I. Corporation, "The
computation of transcendental functions on the ia-64 architecture," Intel
Technology Journal, vol. 4, pp. 234--251, 1999.

[34] A. Nannarelli, "A multi-format floating-point multiplier for power­
efficient operations," in 2017 30th IEEE International System-on-Chip
Conference (SOCC), pp. 351-356, Sept 2017.

Th1s open occess orticle ,s distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) llcense
http / /www sei org.br/1Jbe/ do, l 0.18580/set,Jbe 2022. l Web Link http / /dx do1.org/l 0. l 8580/set1Jbe.2022 l

19

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article l, l l p.
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print). 2446-9246/ISSN (Online): 2446-9432

[35] S. Ristov and M. Gusev, "Superlinear speedup for matrix multiplication,"
in Proceedings of the !TI 2012 34th Intemational Conference on
Information Technology Interfaces, pp. 499-504, 2012.

[36] R. Khanna, S. Verma, R. Biswas, and J. Singh, "Implementation of
branch delay in superscalar processors by reducing branch penalties," in
2010 IEEE 2nd Intemational Advance Computing Conference (IACC),
pp. 14-20, 2010.

[37] D. Yang and S. Wegner, ''Apple iphone xs max teardown," 2018.
[38] M. Alarcon, D. Yang, S. Wegner, and A. Cowsky, "Samsung galaxy

sl0+ teardown," 2019.
[39] D. Yang and S. Wegner, "Google pixel 3 xi teardown," 2018.

FADI JERJI (S'18) received a B.S. degree in
computer engineering in 2010 and an M.S. de­
gree in electrical and computation engineering
from Mackenzie Presbyterian University, São Paulo,
Brazil, in 2019. He is currently pursuing a Ph.D.
degree in electrical and computation engineering at
Mackenzie Presbyterian University. Since 2017 he
has been a post-grad Researcher with the Digital
TV Research Laboratory at Mackenzie Presbyterian
University.

LEANDRO A. SILVA is a Computer Engineer with
a Ph.D. in Systems Engineering from the School
of Engineering of the University of São Paulo,
Brazil. He is currently an Adjunct Professor at the
School of Computing and Informatics at Mackenzie
University. He works on artificial neural networks,
pattern recognition, data mining, machine learning,
and big data analytics.

CRISTIANO AKAMINE received a Ph.D. degree
in electrical engineering from the State University
of Campinas, Brazil, in 2011. He is a Professor at
Mackenzie Presbyterian University, where he is a
Coordinator of the Digital TV Research Laboratory.
He is a member of the Board of the Brazilian
Digital Terrestrial Television Forurn and Society
of Brazilian Broadcast Engineers (SET). He works
with the ISDB-TB broadcasting standardization and
holds severa! patents, intellectual property licenses.
He also has published numerous articles and has a

Brazilian scientific grant of Productivity and Technological Development and
Innovative Extension-Level 2 from the National Council of Technological
and Scientific Development. He has also served as a reviewer for severa!
periodicals and conferences and has participated as a Guest Editor in the
Special Issue Point-to-Multipoint Communications and Broadcasting in 5G
of IEEE Communications Magazine.

Th1s open occess orticle ,s distnbuted under a Creat,ve Commons Attnbut,on (CC-BY) license

http / /www sei org.br/1Jbe/ do, l 0.18580/set,Jbe 2022. l Web Link http / /dx do1.org/l 0. l 8580/set1Jbe.2022 l

20

Received in 2022-09-26 I Approved in 2022-12-21

